web-dev-qa-db-fra.com

Comment convertir des floats en fractions lisibles par l'homme?

Disons que nous avons 0,33, nous devons sortir "1/3". 
Si nous avons "0.4", nous devons sortir "2/5".

L'idée est de rendre lisible pour l'utilisateur afin qu'il comprenne que "x parties sur y" est un meilleur moyen de comprendre les données.

Je sais que les pourcentages sont un bon substitut, mais je me demandais s'il existait un moyen simple de procéder.

97
Swaroop C H

J'ai trouvé que trouver une approximation rationnelle à un nombre réel C code de David Eppstein correspond exactement à ce que vous demandez. Son basé sur la théorie des fractions continues et très rapide et assez compacte.

J'ai utilisé des versions de cet outil personnalisées pour des limites spécifiques de numérateur et de dénominateur.

/*
** find rational approximation to given real number
** David Eppstein / UC Irvine / 8 Aug 1993
**
** With corrections from Arno Formella, May 2008
**
** usage: a.out r d
**   r is real number to approx
**   d is the maximum denominator allowed
**
** based on the theory of continued fractions
** if x = a1 + 1/(a2 + 1/(a3 + 1/(a4 + ...)))
** then best approximation is found by truncating this series
** (with some adjustments in the last term).
**
** Note the fraction can be recovered as the first column of the matrix
**  ( a1 1 ) ( a2 1 ) ( a3 1 ) ...
**  ( 1  0 ) ( 1  0 ) ( 1  0 )
** Instead of keeping the sequence of continued fraction terms,
** we just keep the last partial product of these matrices.
*/

#include <stdio.h>

main(ac, av)
int ac;
char ** av;
{
    double atof();
    int atoi();
    void exit();

    long m[2][2];
    double x, startx;
    long maxden;
    long ai;

    /* read command line arguments */
    if (ac != 3) {
        fprintf(stderr, "usage: %s r d\n",av[0]);  // AF: argument missing
        exit(1);
    }
    startx = x = atof(av[1]);
    maxden = atoi(av[2]);

    /* initialize matrix */
    m[0][0] = m[1][1] = 1;
    m[0][1] = m[1][0] = 0;

    /* loop finding terms until denom gets too big */
    while (m[1][0] *  ( ai = (long)x ) + m[1][1] <= maxden) {
        long t;
        t = m[0][0] * ai + m[0][1];
        m[0][1] = m[0][0];
        m[0][0] = t;
        t = m[1][0] * ai + m[1][1];
        m[1][1] = m[1][0];
        m[1][0] = t;
        if(x==(double)ai) break;     // AF: division by zero
        x = 1/(x - (double) ai);
        if(x>(double)0x7FFFFFFF) break;  // AF: representation failure
    } 

    /* now remaining x is between 0 and 1/ai */
    /* approx as either 0 or 1/m where m is max that will fit in maxden */
    /* first try zero */
    printf("%ld/%ld, error = %e\n", m[0][0], m[1][0],
           startx - ((double) m[0][0] / (double) m[1][0]));

    /* now try other possibility */
    ai = (maxden - m[1][1]) / m[1][0];
    m[0][0] = m[0][0] * ai + m[0][1];
    m[1][0] = m[1][0] * ai + m[1][1];
    printf("%ld/%ld, error = %e\n", m[0][0], m[1][0],
           startx - ((double) m[0][0] / (double) m[1][0]));
}
66
Epsilon

Depuis Python 2.6, il y a le module fractions .

(Citant des docs.)

>>> from fractions import Fraction
>>> Fraction('3.1415926535897932').limit_denominator(1000)
Fraction(355, 113)

>>> from math import pi, cos
>>> Fraction.from_float(cos(pi/3))
Fraction(4503599627370497, 9007199254740992)
>>> Fraction.from_float(cos(pi/3)).limit_denominator()
Fraction(1, 2)
25
Debilski

Si le résultat est de donner au lecteur humain une impression rapide de l'ordre du résultat, cela n'a aucun sens de renvoyer quelque chose comme "113/211", le résultat devrait donc se limiter à l'utilisation de nombres à un chiffre (et peut-être 1/10 et 9/10). Si c'est le cas, vous pouvez constater qu'il n'y a que 27 différentes fractions.

Puisque le calcul sous-jacent pour la génération de la sortie ne changera jamais, une solution pourrait consister simplement à coder en dur un arbre de recherche binaire, afin que la fonction effectue au plus la comparaison log (27) ~ = 4 3/4. Voici une version C testée du code

char *userTextForDouble(double d, char *rval)
{
    if (d == 0.0)
        return "0";

    // TODO: negative numbers:if (d < 0.0)...
    if (d >= 1.0)
        sprintf(rval, "%.0f ", floor(d));
    d = d-floor(d); // now only the fractional part is left

    if (d == 0.0)
        return rval;

    if( d < 0.47 )
    {
        if( d < 0.25 )
        {
            if( d < 0.16 )
            {
                if( d < 0.12 ) // Note: fixed from .13
                {
                    if( d < 0.11 )
                        strcat(rval, "1/10"); // .1
                    else
                        strcat(rval, "1/9"); // .1111....
                }
                else // d >= .12
                {
                    if( d < 0.14 )
                        strcat(rval, "1/8"); // .125
                    else
                        strcat(rval, "1/7"); // .1428...
                }
            }
            else // d >= .16
            {
                if( d < 0.19 )
                {
                    strcat(rval, "1/6"); // .1666...
                }
                else // d > .19
                {
                    if( d < 0.22 )
                        strcat(rval, "1/5"); // .2
                    else
                        strcat(rval, "2/9"); // .2222...
                }
            }
        }
        else // d >= .25
        {
            if( d < 0.37 ) // Note: fixed from .38
            {
                if( d < 0.28 ) // Note: fixed from .29
                {
                    strcat(rval, "1/4"); // .25
                }
                else // d >=.28
                {
                    if( d < 0.31 )
                        strcat(rval, "2/7"); // .2857...
                    else
                        strcat(rval, "1/3"); // .3333...
                }
            }
            else // d >= .37
            {
                if( d < 0.42 ) // Note: fixed from .43
                {
                    if( d < 0.40 )
                        strcat(rval, "3/8"); // .375
                    else
                        strcat(rval, "2/5"); // .4
                }
                else // d >= .42
                {
                    if( d < 0.44 )
                        strcat(rval, "3/7"); // .4285...
                    else
                        strcat(rval, "4/9"); // .4444...
                }
            }
        }
    }
    else
    {
        if( d < 0.71 )
        {
            if( d < 0.60 )
            {
                if( d < 0.55 ) // Note: fixed from .56
                {
                    strcat(rval, "1/2"); // .5
                }
                else // d >= .55
                {
                    if( d < 0.57 )
                        strcat(rval, "5/9"); // .5555...
                    else
                        strcat(rval, "4/7"); // .5714
                }
            }
            else // d >= .6
            {
                if( d < 0.62 ) // Note: Fixed from .63
                {
                    strcat(rval, "3/5"); // .6
                }
                else // d >= .62
                {
                    if( d < 0.66 )
                        strcat(rval, "5/8"); // .625
                    else
                        strcat(rval, "2/3"); // .6666...
                }
            }
        }
        else
        {
            if( d < 0.80 )
            {
                if( d < 0.74 )
                {
                    strcat(rval, "5/7"); // .7142...
                }
                else // d >= .74
                {
                    if(d < 0.77 ) // Note: fixed from .78
                        strcat(rval, "3/4"); // .75
                    else
                        strcat(rval, "7/9"); // .7777...
                }
            }
            else // d >= .8
            {
                if( d < 0.85 ) // Note: fixed from .86
                {
                    if( d < 0.83 )
                        strcat(rval, "4/5"); // .8
                    else
                        strcat(rval, "5/6"); // .8333...
                }
                else // d >= .85
                {
                    if( d < 0.87 ) // Note: fixed from .88
                    {
                        strcat(rval, "6/7"); // .8571
                    }
                    else // d >= .87
                    {
                        if( d < 0.88 ) // Note: fixed from .89
                        {
                            strcat(rval, "7/8"); // .875
                        }
                        else // d >= .88
                        {
                            if( d < 0.90 )
                                strcat(rval, "8/9"); // .8888...
                            else
                                strcat(rval, "9/10"); // .9
                        }
                    }
                }
            }
        }
    }

    return rval;
}
21
J P

Voici un lien expliquant les calculs pour convertir une décimale en fraction:

http://www.webmath.com/dec2fract.html

Et voici un exemple de fonction expliquant comment le faire en utilisant VB (à partir de www.freevbcode.com/ShowCode.asp?ID=582):

Public Function Dec2Frac(ByVal f As Double) As String

   Dim df As Double
   Dim lUpperPart As Long
   Dim lLowerPart As Long

   lUpperPart = 1
   lLowerPart = 1

   df = lUpperPart / lLowerPart
   While (df <> f)
      If (df < f) Then
         lUpperPart = lUpperPart + 1
      Else
         lLowerPart = lLowerPart + 1
         lUpperPart = f * lLowerPart
      End If
      df = lUpperPart / lLowerPart
   Wend
Dec2Frac = CStr(lUpperPart) & "/" & CStr(lLowerPart)
End Function

(A partir des recherches Google: convertir le nombre décimal en fraction, convertir le nombre décimal en code de fraction)

16
devinmoore

Vous voudrez peut-être lire Ce que tous les informaticiens devraient savoir sur l’arithmétique en virgule flottante .

Vous devrez spécifier une précision en multipliant par un grand nombre:

3.141592 * 1000000 = 3141592

alors vous pouvez faire une fraction:

3 + (141592 / 1000000)

et réduire via GCD ...

3 + (17699 / 125000)

mais il n'y a aucun moyen d'extraire la fraction intentionnelle. Vous voudrez peut-être toujours utiliser des fractions dans tout votre code. N'oubliez pas de réduire les fractions lorsque vous le pouvez pour éviter les débordements!

9
nlucaroni

Voici les versions Perl et Javascript du code VB suggéré par devinmoore:

Perl:

sub dec2frac {
    my $d = shift;

    my $df  = 1;
    my $top = 1;
    my $bot = 1;

    while ($df != $d) {
      if ($df < $d) {
        $top += 1;
      }
      else {
         $bot += 1;
         $top = int($d * $bot);
      }
      $df = $top / $bot;
   }
   return "$top/$bot";
}

Et le javascript presque identique:

function dec2frac(d) {

    var df = 1;
    var top = 1;
    var bot = 1;

    while (df != d) {
        if (df < d) {
            top += 1;
        }
        else {
            bot += 1;
            top = parseInt(d * bot);
        }
        df = top / bot;
    }
    return top + '/' + bot;
}
9
mivk

Une implémentation en C #

/// <summary>
/// Represents a rational number
/// </summary>
public struct Fraction
{
    public int Numerator;
    public int Denominator;

    /// <summary>
    /// Constructor
    /// </summary>
    public Fraction(int numerator, int denominator)
    {
        this.Numerator = numerator;
        this.Denominator = denominator;
    }

    /// <summary>
    /// Approximates a fraction from the provided double
    /// </summary>
    public static Fraction Parse(double d)
    {
        return ApproximateFraction(d);
    }

    /// <summary>
    /// Returns this fraction expressed as a double, rounded to the specified number of decimal places.
    /// Returns double.NaN if denominator is zero
    /// </summary>
    public double ToDouble(int decimalPlaces)
    {
        if (this.Denominator == 0)
            return double.NaN;

        return System.Math.Round(
            Numerator / (double)Denominator,
            decimalPlaces
        );
    }


    /// <summary>
    /// Approximates the provided value to a fraction.
    /// http://stackoverflow.com/questions/95727/how-to-convert-floats-to-human-readable-fractions
    /// </summary>
    private static Fraction ApproximateFraction(double value)
    {
        const double EPSILON = .000001d;

        int n = 1;  // numerator
        int d = 1;  // denominator
        double fraction = n / d;

        while (System.Math.Abs(fraction - value) > EPSILON)
        {
            if (fraction < value)
            {
                n++;
            }
            else
            {
                d++;
                n = (int)System.Math.Round(value * d);
            }

            fraction = n / (double)d;
        }

        return new Fraction(n, d);
    }
}
9
Tom

Le Stern-Brocot Tree induit une manière assez naturelle d’approximer les nombres réels par fractions de dénominateurs simples.

7
Doug McClean

Une partie du problème est que tant de fractions ne sont pas en réalité facilement interprétables comme des fractions. Par exemple. 0,33 n'est pas 1/3, c'est 33/100. Mais si vous vous souvenez de votre formation au primaire, vous pouvez convertir les valeurs décimales en fractions. Cependant, il est peu probable que vous obteniez ce que vous voulez, car la plupart du temps, les nombres décimaux ne sont pas stockés à 0,33, mais à 0,329999999999998.

Faites-vous une faveur et ne vous embêtez pas là-dessus, mais si vous en avez besoin, vous pouvez procéder comme suit:

Multipliez la valeur d'origine par 10 jusqu'à ce que vous supprimiez la partie décimale. Conservez ce nombre et utilisez-le comme diviseur. Ensuite, faites une série de simplifications en recherchant des dénominateurs communs.

Donc, 0,4 serait 4/10. Vous devriez alors rechercher des diviseurs communs commençant par des valeurs faibles, probablement des nombres premiers. En commençant par 2, vous verriez si 2 divise le numérateur et le dénominateur de manière égale en vérifiant si le plancher de la division est identique à la division elle-même.

floor(5/2) = 2
5/2 = 2.5

Donc 5 ne divise pas 2 de manière égale. Alors, vous vérifiez le nombre suivant, par exemple 3. Vous le faites jusqu'à ce que vous atteigniez ou dépassiez la racine carrée du plus petit nombre.

Après que vous faites cela alors vous avez besoin

5
Orion Adrian

Ce n'est pas un "algorithme", juste une solution Python: http://docs.python.org/library/fractions.html

>>> from fractions import Fraction
>>> Fraction('3.1415926535897932').limit_denominator(1000)
Fraction(355, 113)
5
eldad

"Disons que nous avons 0,33, nous devons sortir" 1/3 "."

Quelle précision attendez-vous de la "solution"? 0,33 n'est pas égal à 1/3. Comment reconnaissez-vous une "bonne" réponse (facile à lire)?

Quoi qu’il en soit, un algorithme possible pourrait être:

Si vous vous attendez à trouver la fraction la plus proche sous une forme X/Y où Y est inférieur à 10, vous pouvez alors boucler sur les 9 Y possibles, pour chaque Y calculer X, puis sélectionner celui qui est le plus précis.

4
Suma

Une solution intégrée à R:

library(MASS)
fractions(0.666666666)
## [1] 2/3

Ceci utilise une méthode de fraction continue et a les arguments optionnels cycles et max.denominator pour ajuster la précision.

3
Ben Bolker

Je pense que la meilleure façon de faire est de convertir d’abord votre valeur float en une représentation ascii. En C++, vous pouvez utiliser ostringstream ou en C, vous pouvez utiliser sprintf. Voici à quoi cela ressemblerait en C++:

ostringstream oss;
float num;
cin >> num;
oss << num;
string numStr = oss.str();
int i = numStr.length(), pow_ten = 0;
while (i > 0) {
    if (numStr[i] == '.')
        break;
    pow_ten++;
    i--;
}
for (int j = 1; j < pow_ten; j++) {
    num *= 10.0;
}
cout << static_cast<int>(num) << "/" << pow(10, pow_ten - 1) << endl;

Une approche similaire pourrait être prise en ligne droite.

Ensuite, vous devrez vérifier que la fraction est au plus bas. Cet algorithme donnera une réponse précise, c’est-à-dire que 0,33 afficherait "33/100" et non "1/3". Cependant, 0.4 donnerait "4/10", ce qui, une fois réduit au minimum, serait "2/5". Cela n’est peut-être pas aussi puissant que la solution d’EppStein, mais j’estime que cela est plus simple. 

2
bpm

Une solution consiste simplement à stocker tous les nombres en tant que nombres rationnels. Il existe des bibliothèques pour l'arithmétique des nombres rationnels (par exemple GMP ). Si vous utilisez une langue OO, vous pourrez peut-être simplement utiliser une bibliothèque de classes de nombres rationnelles pour remplacer votre classe de nombres.

Les programmes financiers, entre autres, utiliseraient une telle solution pour pouvoir effectuer des calculs exacts et préserver la précision qui pourrait être perdue avec un simple flotteur.

Bien sûr, ce sera beaucoup plus lent, donc ce ne sera peut-être pas pratique pour vous. Cela dépend du nombre de calculs que vous devez effectuer et de l’importance de la précision pour vous.

a = rational(1);
b = rational(3);
c = a / b;

print (c.asFraction)  --->  "1/3"
print (c.asFloat) ----> "0.333333"
2
robottobor

Répondez en C++, en supposant que vous avez une classe 'BigInt', qui peut stocker des entiers de taille illimitée.

Vous pouvez utiliser «unsigned long long» à la place, mais cela ne fonctionnera que pour certaines valeurs.

void GetRational(double val)
{
    if (val == val+1) // Inf
        throw "Infinite Value";
    if (val != val) // NaN
        throw "Undefined Value";

    bool sign = false;
    BigInt enumerator = 0;
    BigInt denominator = 1;

    if (val < 0)
    {
        val = -val;
        sign = true;
    }

    while (val > 0)
    {
        unsigned int intVal = (unsigned int)val;
        val -= intVal;
        enumerator += intVal;
        val *= 2;
        enumerator *= 2;
        denominator *= 2;
    }

    BigInt gcd = GCD(enumerator,denominator);
    enumerator /= gcd;
    denominator /= gcd;

    Print(sign? "-":"+");
    Print(enumerator);
    Print("/");
    Print(denominator);

    // Or simply return {sign,enumerator,denominator} as you wish
}

BTW, GetRational (0.0) renverra "+0/1", de sorte que vous voudrez peut-être traiter ce cas séparément.

P.S .: J'utilise ce code dans ma propre classe 'RationalNum' depuis plusieurs années et il a été testé de manière approfondie.

2
barak manos

Vous devrez déterminer le niveau d'erreur que vous êtes prêt à accepter. Toutes les fractions décimales ne seront pas réduites à une simple fraction. Je choisirais probablement un nombre facilement divisible, comme 60, et déterminerais le nombre de 60ièmes se rapprochant le plus de la valeur, puis simplifierais la fraction.

2
Mark Bessey

Cet algorithme de Ian RichardsJOHN KENNEDY RENVOIE NON SEULEMENT DES FRACTIONS DE NICE, MAIS IL EST &EACUTE;GALEMENT TR&EGRAVE;S PERFORMANT EN TERMES DE RAPIDIT&EACUTE;. CECI EST UN CODE C # TEL QUE PRIS DE CETTE R&EACUTE;PONSE PAR MOI.

IL PEUT G&EACUTE;RER TOUTES LES VALEURS double &AGRAVE; L'EXCEPTION DES VALEURS SP&EACUTE;CIALES TELLES QUE NAN ET +/- INFINITY, QUE VOUS DEVREZ AJOUTER SI N&EACUTE;CESSAIRE.

IL RETOURNE UN new Fraction(numerator, denominator). REMPLACEZ PAR VOTRE PROPRE TYPE.

_/POUR PLUS D'EXEMPLES DE VALEURS ET UNE COMPARAISON AVEC D'AUTRES ALGORITHMES, ALLEZ ICI

public Fraction RealToFraction(double value, double accuracy)
{
    if (accuracy <= 0.0 || accuracy >= 1.0)
    {
        throw new ArgumentOutOfRangeException("accuracy", "Must be > 0 and < 1.");
    }

    int sign = Math.Sign(value);

    if (sign == -1)
    {
        value = Math.Abs(value);
    }

    // Accuracy is the maximum relative error; convert to absolute maxError
    double maxError = sign == 0 ? accuracy : value * accuracy;

    int n = (int) Math.Floor(value);
    value -= n;

    if (value < maxError)
    {
        return new Fraction(sign * n, 1);
    }

    if (1 - maxError < value)
    {
        return new Fraction(sign * (n + 1), 1);
    }

    double z = value;
    int previousDenominator = 0;
    int denominator = 1;
    int numerator;

    do
    {
        z = 1.0 / (z - (int) z);
        int temp = denominator;
        denominator = denominator * (int) z + previousDenominator;
        previousDenominator = temp;
        numerator = Convert.ToInt32(value * denominator);
    }
    while (Math.Abs(value - (double) numerator / denominator) > maxError && z != (int) z);

    return new Fraction((n * denominator + numerator) * sign, denominator);
}

Exemple de valeurs renvoyées par cet algorithme:

Accuracy: 1.0E-3      | Richards                     
Input                 | Result           Error       
======================| =============================
   3                  |       3/1          0         
   0.999999           |       1/1         1.0E-6     
   1.000001           |       1/1        -1.0E-6     
   0.50 (1/2)         |       1/2          0         
   0.33... (1/3)      |       1/3          0         
   0.67... (2/3)      |       2/3          0         
   0.25 (1/4)         |       1/4          0         
   0.11... (1/9)      |       1/9          0         
   0.09... (1/11)     |       1/11         0         
   0.62... (307/499)  |       8/13        2.5E-4     
   0.14... (33/229)   |      16/111       2.7E-4     
   0.05... (33/683)   |      10/207      -1.5E-4     
   0.18... (100/541)  |      17/92       -3.3E-4     
   0.06... (33/541)   |       5/82       -3.7E-4     
   0.1                |       1/10         0         
   0.2                |       1/5          0         
   0.3                |       3/10         0         
   0.4                |       2/5          0         
   0.5                |       1/2          0         
   0.6                |       3/5          0         
   0.7                |       7/10         0         
   0.8                |       4/5          0         
   0.9                |       9/10         0         
   0.01               |       1/100        0         
   0.001              |       1/1000       0         
   0.0001             |       1/10000      0         
   0.33333333333      |       1/3         1.0E-11    
   0.333              |     333/1000       0         
   0.7777             |       7/9         1.0E-4     
   0.11               |      10/91       -1.0E-3     
   0.1111             |       1/9         1.0E-4     
   3.14               |      22/7         9.1E-4     
   3.14... (pi)       |      22/7         4.0E-4     
   2.72... (e)        |      87/32        1.7E-4     
   0.7454545454545    |      38/51       -4.8E-4     
   0.01024801004      |       2/195       8.2E-4     
   0.99011            |     100/101      -1.1E-5     
   0.26... (5/19)     |       5/19         0         
   0.61... (37/61)    |      17/28        9.7E-4     
                      | 
Accuracy: 1.0E-4      | Richards                     
Input                 | Result           Error       
======================| =============================
   0.62... (307/499)  |     299/486      -6.7E-6     
   0.05... (33/683)   |      23/476       6.4E-5     
   0.06... (33/541)   |      33/541        0         
   1E-05              |       1/99999     1.0E-5     
   0.7777             |    1109/1426     -1.8E-7     
   3.14... (pi)       |     333/106      -2.6E-5     
   2.72... (e)        |     193/71        1.0E-5     
   0.61... (37/61)    |      37/61         0         
2
Kay Zed

Vous pouvez le faire dans n’importe quel langage de programmation en procédant comme suit:

  1. Multipliez et divisez par 10 ^ x où x est la puissance de 10 requise pour vous assurer qu'il ne reste plus de décimales dans le nombre. Exemple: Multipliez 0.33 par 10 ^ 2 = 100 pour obtenir 33 et divisez-le par le même pour obtenir 33/100
  2. Réduisez le numérateur et le dénominateur de la fraction résultante par factorisation jusqu'à ce que vous ne puissiez plus obtenir des entiers à partir du résultat.
  3. La fraction réduite résultante devrait être votre réponse.

Exemple: 0,2 = 0,2 x 10 ^ 1/10 ^ 1 = 2/10 = 1/5

Donc, cela peut être lu comme "1 partie sur 5"

2
Pascal

Ruby a déjà une solution intégrée:

0.33.rationalize.to_s # => "33/100"
0.4.rationalize.to_s # => "2/5"

Dans Rails, les attributs numériques ActiveRecord peuvent également être convertis:

product.size = 0.33
product.size.to_r.to_s # => "33/100"
2
Josh W Lewis

Terminé le code ci-dessus et l'a converti en as3

public static function toFrac(f:Number) : String
    {
        if (f>1)
        {
            var parte1:int;
            var parte2:Number;
            var resultado:String;
            var loc:int = String(f).indexOf(".");
            parte2 = Number(String(f).slice(loc, String(f).length));
            parte1 = int(String(f).slice(0,loc));
            resultado = toFrac(parte2);
            parte1 *= int(resultado.slice(resultado.indexOf("/") + 1, resultado.length)) + int(resultado.slice(0, resultado.indexOf("/")));
            resultado = String(parte1) +  resultado.slice(resultado.indexOf("/"), resultado.length)
            return resultado;
        }
        if( f < 0.47 )
            if( f < 0.25 )
                if( f < 0.16 )
                    if( f < 0.13 )
                        if( f < 0.11 )
                            return "1/10";
                        else
                            return "1/9";
                    else
                        if( f < 0.14 )
                            return "1/8";
                        else
                            return "1/7";
                else
                    if( f < 0.19 )
                        return "1/6";
                    else
                        if( f < 0.22 )
                            return "1/5";
                        else
                            return "2/9";
            else
                if( f < 0.38 )
                    if( f < 0.29 )
                        return "1/4";
                    else
                        if( f < 0.31 )
                            return "2/7";
                        else
                            return "1/3";
                else
                    if( f < 0.43 )
                        if( f < 0.40 )
                            return "3/8";
                        else
                            return "2/5";
                    else
                        if( f < 0.44 )
                            return "3/7";
                        else
                            return "4/9";
        else
            if( f < 0.71 )
                if( f < 0.60 )
                    if( f < 0.56 )
                        return "1/2";
                    else
                        if( f < 0.57 )
                            return "5/9";
                        else
                            return "4/7";
                else
                    if( f < 0.63 )
                        return "3/5";
                    else
                        if( f < 0.66 )
                            return "5/8";
                        else
                            return "2/3";
            else
                if( f < 0.80 )
                    if( f < 0.74 )
                        return "5/7";
                    else
                        if(f < 0.78 )
                            return "3/4";
                        else
                            return "7/9";
                else
                    if( f < 0.86 )
                        if( f < 0.83 )
                            return "4/5";
                        else
                            return "5/6";
                    else
                        if( f < 0.88 )
                            return "6/7";
                        else
                            if( f < 0.89 )
                                return "7/8";
                            else
                                if( f < 0.90 )
                                    return "8/9";
                                else
                                    return "9/10";
    }
1
João Lopes

Voici une implémentation rapide en JavaScript utilisant une approche de force brute . Pas du tout optimisée, elle fonctionne dans une plage de fractions prédéfinie: http://jsfiddle.net/PdL23/1/

/* This should convert any decimals to a simplified fraction within the range specified by the two for loops. Haven't done any thorough testing, but it seems to work fine.

I have set the bounds for numerator and denominator to 20, 20... but you can increase this if you want in the two for loops.

Disclaimer: Its not at all optimized. (Feel free to create an improved version.)
*/

decimalToSimplifiedFraction = function(n) {

    for(num = 1; num < 20; num++) {  // "num" is the potential numerator
        for(den = 1; den < 20; den++) {  // "den" is the potential denominator
            var multiplyByInverse = (n * den ) / num;

            var roundingError = Math.round(multiplyByInverse) - multiplyByInverse;

            // Checking if we have found the inverse of the number, 
            if((Math.round(multiplyByInverse) == 1) && (Math.abs(roundingError) < 0.01)) {
                return num + "/" + den;
            }
        }
    }
};

//Put in your test number here.
var floatNumber = 2.56;

alert(floatNumber + " = " + decimalToSimplifiedFraction(floatNumber));

Ceci est inspiré de l'approche utilisée par JPS.

1
Deepak Joy

Vous allez avoir deux problèmes de base qui rendront cela difficile:

1) Le point flottant n'est pas une représentation exacte, ce qui signifie que si vous avez une fraction de "x/y" qui donne une valeur de "z", votre algorithme de fraction peut renvoyer un résultat autre que "x/y".

2) Il y a une infinité beaucoup plus de nombres irrationnels que rationnels. Un nombre rationnel est un nombre qui peut être représenté sous forme de fraction. Être irrationnel ceux qui ne peuvent pas.

Cependant, de manière peu coûteuse, puisque la virgule flottante a une précision limite, vous pouvez toujours la représenter comme une sorte de faction. (Je pense...)

1
Torlack

Disons que nous avons 0,33, nous devons sortir "1/3". Si nous avons "0,4", nous besoin de sortie "2/5".

C'est faux dans le cas habituel, à cause de 1/3 = 0.3333333 = 0. (3) De plus, il est impossible de savoir à partir des solutions suggérées ci-dessus si son nombre décimal peut être converti en fraction avec une précision définie, car la sortie est toujours une fraction.

MAIS, je suggère ma fonction complète avec de nombreuses options basées sur l'idée de Série géométrique infinie , en particulier sur la formule:

enter image description here

Au début, cette fonction essaie de trouver une période de fraction dans la représentation sous forme de chaîne. Après cela, la formule décrite ci-dessus est appliquée.

Le code des nombres rationnels est emprunté à Stephen M. McKamey implémentation des nombres rationnels en C #. J'espère qu'il n'est pas très difficile de transférer mon code dans d'autres langues.

/// <summary>
/// Convert decimal to fraction
/// </summary>
/// <param name="value">decimal value to convert</param>
/// <param name="result">result fraction if conversation is succsess</param>
/// <param name="decimalPlaces">precision of considereation frac part of value</param>
/// <param name="trimZeroes">trim zeroes on the right part of the value or not</param>
/// <param name="minPeriodRepeat">minimum period repeating</param>
/// <param name="digitsForReal">precision for determination value to real if period has not been founded</param>
/// <returns></returns>
public static bool FromDecimal(decimal value, out Rational<T> result, 
    int decimalPlaces = 28, bool trimZeroes = false, decimal minPeriodRepeat = 2, int digitsForReal = 9)
{
    var valueStr = value.ToString("0.0000000000000000000000000000", CultureInfo.InvariantCulture);
    var strs = valueStr.Split('.');

    long intPart = long.Parse(strs[0]);
    string fracPartTrimEnd = strs[1].TrimEnd(new char[] { '0' });
    string fracPart;

    if (trimZeroes)
    {
        fracPart = fracPartTrimEnd;
        decimalPlaces = Math.Min(decimalPlaces, fracPart.Length);
    }
    else
        fracPart = strs[1];

    result = new Rational<T>();
    try
    {
        string periodPart;
        bool periodFound = false;

        int i;
        for (i = 0; i < fracPart.Length; i++)
        {
            if (fracPart[i] == '0' && i != 0)
                continue;

            for (int j = i + 1; j < fracPart.Length; j++)
            {
                periodPart = fracPart.Substring(i, j - i);
                periodFound = true;
                decimal periodRepeat = 1;
                decimal periodStep = 1.0m / periodPart.Length;
                var upperBound = Math.Min(fracPart.Length, decimalPlaces);
                int k;
                for (k = i + periodPart.Length; k < upperBound; k += 1)
                {
                    if (periodPart[(k - i) % periodPart.Length] != fracPart[k])
                    {
                        periodFound = false;
                        break;
                    }
                    periodRepeat += periodStep;
                }

                if (!periodFound && upperBound - k <= periodPart.Length && periodPart[(upperBound - i) % periodPart.Length] > '5')
                {
                    var ind = (k - i) % periodPart.Length;
                    var regroupedPeriod = (periodPart.Substring(ind) + periodPart.Remove(ind)).Substring(0, upperBound - k);
                    ulong periodTailPlusOne = ulong.Parse(regroupedPeriod) + 1;
                    ulong fracTail = ulong.Parse(fracPart.Substring(k, regroupedPeriod.Length));
                    if (periodTailPlusOne == fracTail)
                        periodFound = true;
                }

                if (periodFound && periodRepeat >= minPeriodRepeat)
                {
                    result = FromDecimal(strs[0], fracPart.Substring(0, i), periodPart);
                    break;
                }
                else
                    periodFound = false;
            }

            if (periodFound)
                break;
        }

        if (!periodFound)
        {
            if (fracPartTrimEnd.Length >= digitsForReal)
                return false;
            else
            {
                result = new Rational<T>(long.Parse(strs[0]), 1, false);
                if (fracPartTrimEnd.Length != 0)
                    result = new Rational<T>(ulong.Parse(fracPartTrimEnd), TenInPower(fracPartTrimEnd.Length));
                return true;
            }
        }

        return true;
    }
    catch
    {
        return false;
    }
}

public static Rational<T> FromDecimal(string intPart, string fracPart, string periodPart)
{
    Rational<T> firstFracPart;
    if (fracPart != null && fracPart.Length != 0)
    {
        ulong denominator = TenInPower(fracPart.Length);
        firstFracPart = new Rational<T>(ulong.Parse(fracPart), denominator);
    }
    else
        firstFracPart = new Rational<T>(0, 1, false);

    Rational<T> secondFracPart;
    if (periodPart != null && periodPart.Length != 0)
        secondFracPart =
            new Rational<T>(ulong.Parse(periodPart), TenInPower(fracPart.Length)) *
            new Rational<T>(1, Nines((ulong)periodPart.Length), false);
    else
        secondFracPart = new Rational<T>(0, 1, false);

    var result = firstFracPart + secondFracPart;
    if (intPart != null && intPart.Length != 0)
    {
        long intPartLong = long.Parse(intPart);
        result = new Rational<T>(intPartLong, 1, false) + (intPartLong == 0 ? 1 : Math.Sign(intPartLong)) * result;
    }

    return result;
}

private static ulong TenInPower(int power)
{
    ulong result = 1;
    for (int l = 0; l < power; l++)
        result *= 10;
    return result;
}

private static decimal TenInNegPower(int power)
{
    decimal result = 1;
    for (int l = 0; l > power; l--)
        result /= 10.0m;
    return result;
}

private static ulong Nines(ulong power)
{
    ulong result = 9;
    if (power >= 0)
        for (ulong l = 0; l < power - 1; l++)
            result = result * 10 + 9;
    return result;
}

Il y a quelques exemples d'utilisation:

Rational<long>.FromDecimal(0.33333333m, out r, 8, false);
// then r == 1 / 3;

Rational<long>.FromDecimal(0.33333333m, out r, 9, false);
// then r == 33333333 / 100000000;

Votre cas avec la coupe de la partie zéro de la partie droite

Rational<long>.FromDecimal(0.33m, out r, 28, true);
// then r == 1 / 3;

Rational<long>.FromDecimal(0.33m, out r, 28, true);
// then r == 33 / 100;

Démonstration de la période minimale:

Rational<long>.FromDecimal(0.123412m, out r, 28, true, 1.5m));
// then r == 1234 / 9999;
Rational<long>.FromDecimal(0.123412m, out r, 28, true, 1.6m));
// then r == 123412 / 1000000; because of minimu repeating of period is 0.1234123 in this case.

Arrondi à la fin:

Rational<long>.FromDecimal(0.8888888888888888888888888889m, out r));
// then r == 8 == 9;

Le cas le plus intéressant:

Rational<long>.FromDecimal(0.12345678m, out r, 28, true, 2, 9);
// then r == 12345678 / 100000000;

Rational<long>.FromDecimal(0.12345678m, out r, 28, true, 2, 8);
// Conversation failed, because of period has not been founded and there are too many digits in fraction part of input value.

Rational<long>.FromDecimal(0.12121212121212121m, out r, 28, true, 2, 9));
// then r == 4 / 33; Despite of too many digits in input value, period has been founded. Thus it's possible to convert value to fraction.

Tout le monde peut trouver d’autres tests et codes dans ma bibliothèque MathFunctions sur github .

1
Ivan Kochurkin

Je suis tombé sur une solution Haskell particulièrement élégante utilisant un anamorphisme. Cela dépend du récursion-schémas package.

{-# LANGUAGE AllowAmbiguousTypes #-}
{-# LANGUAGE FlexibleContexts    #-}

import           Control.Applicative   (liftA2)
import           Control.Monad         (ap)
import           Data.Functor.Foldable
import           Data.Ratio            (Ratio, (%))

isInteger :: (RealFrac a) => a -> Bool
isInteger = ((==) <*>) (realToFrac . floor)

continuedFraction :: (RealFrac a) => a -> [Int]
continuedFraction = liftA2 (:) floor (ana coalgebra)
    where coalgebra x
              | isInteger x = Nil
              | otherwise = Cons (floor alpha) alpha
                  where alpha = 1 / (x - realToFrac (floor x))

collapseFraction :: (Integral a) => [Int] -> Ratio a
collapseFraction [x]    = fromIntegral x % 1
collapseFraction (x:xs) = (fromIntegral x % 1) + 1 / collapseFraction xs

-- | Use the nth convergent to approximate x
approximate :: (RealFrac a, Integral b) => a -> Int -> Ratio b
approximate x n = collapseFraction $ take n (continuedFraction x)

Si vous essayez ceci dans ghci, ça marche vraiment!

λ:> approximate pi 2
22 % 7
0
user8174234

Comme beaucoup de gens l'ont dit, il est vraiment impossible de reconvertir une virgule flottante en fraction (à moins que ce soit extrêmement exact comme .25). Bien sûr, vous pouvez créer un type de recherche pour un grand nombre de fractions et utiliser une sorte de logique floue pour produire le résultat souhaité. Là encore, cela ne serait pas exact et vous auriez besoin de définir une limite inférieure de la taille de votre dénominateur.

.32 <x <.34 = 1/3 ou quelque chose comme ça.

0
Tim

Voici la mise en œuvre pour Ruby http://github.com/valodzka/frac

Math.frac(0.2, 100)  # => (1/5)
Math.frac(0.33, 10)  # => (1/3)
Math.frac(0.33, 100) # => (33/100)
0
valodzka