web-dev-qa-db-fra.com

Points d'intersection cercle-cercle

Comment calculer les points d'intersection de deux cercles. Je m'attendrais à ce qu'il y ait deux, un ou aucun point d'intersection dans tous les cas.

J'ai les coordonnées x et y du point central et le rayon de chaque cercle.

Une réponse en python serait préférable, mais tout algorithme de travail serait acceptable.

51
fmark

Intersection de deux cercles

Écrit par Paul Bourke

La note suivante décrit comment trouver le ou les points d'intersection entre deux cercles sur un plan, la notation suivante est utilisée. Le but est de trouver les deux points P3 = (x3, y3) s’ils existent.

Intersection of 2 circles

Calculez d'abord la distance d entre le centre des cercles. d = || P1 - P||.

  • Si d> r + r1 alors il n'y a pas de solutions, les cercles sont séparés.
  • Si d <| r - r1| alors il n'y a pas de solutions car un cercle est contenu dans l'autre.
  • Si d = 0 et r = r1 alors les cercles coïncident et il y a un nombre infini de solutions.

Considérant les deux triangles PP2P3 et P1P2P3 nous pouvons écrire

une2 + h2 = r2 et B2 + h2 = r12

En utilisant d = a + b, nous pouvons résoudre pour a,

a = (r2 - r12 + d2 )/(2 d)

On peut facilement montrer que cela se réduit à r lorsque les deux cercles se touchent en un point, c'est-à-dire: d = r + r1 Résoudre pour h en substituant a dans la première équation, h2 = r2 - une2

Alors

P2 = P + a (P1 - P )/ré

Et enfin, P3 = (x3, y3) en termes de P = (x, y), P1 = (x1, y1) et P2 = (x2, y2), est

x3 = x2 + - h (y1 - y )/ré

y3 = y2 - + h (x1 - X )/ré

Source: http://paulbourke.net/geometry/circlesphere/

86
Jacob

Voici mon implémentation C++ basée sur article de Paul Bourke . Cela ne fonctionne que s'il y a deux intersections, sinon il renvoie probablement NaN NAN NAN NAN.

class Point{
    public:
        float x, y;
        Point(float px, float py) {
            x = px;
            y = py;
        }
        Point sub(Point p2) {
            return Point(x - p2.x, y - p2.y);
        }
        Point add(Point p2) {
            return Point(x + p2.x, y + p2.y);
        }
        float distance(Point p2) {
            return sqrt((x - p2.x)*(x - p2.x) + (y - p2.y)*(y - p2.y));
        }
        Point normal() {
            float length = sqrt(x*x + y*y);
            return Point(x/length, y/length);
        }
        Point scale(float s) {
            return Point(x*s, y*s);
        }
};

class Circle {
    public:
        float x, y, r, left;
        Circle(float cx, float cy, float cr) {
            x = cx;
            y = cy;
            r = cr;
            left = x - r;
        }
        pair<Point, Point> intersections(Circle c) {
            Point P0(x, y);
            Point P1(c.x, c.y);
            float d, a, h;
            d = P0.distance(P1);
            a = (r*r - c.r*c.r + d*d)/(2*d);
            h = sqrt(r*r - a*a);
            Point P2 = P1.sub(P0).scale(a/d).add(P0);
            float x3, y3, x4, y4;
            x3 = P2.x + h*(P1.y - P0.y)/d;
            y3 = P2.y - h*(P1.x - P0.x)/d;
            x4 = P2.x - h*(P1.y - P0.y)/d;
            y4 = P2.y + h*(P1.x - P0.x)/d;

            return pair<Point, Point>(Point(x3, y3), Point(x4, y4));
        }

};
15
robert king

Voici une implémentation en Javascript utilisant des vecteurs. Le code est bien documenté, vous devriez pouvoir le suivre. Voici le source originale

Voir la démo en direct ici : enter image description here

// Let EPS (epsilon) be a small value
var EPS = 0.0000001;

// Let a point be a pair: (x, y)
function Point(x, y) {
  this.x = x;
  this.y = y;
}

// Define a circle centered at (x,y) with radius r
function Circle(x,y,r) {
  this.x = x;
  this.y = y;
  this.r = r;
}

// Due to double rounding precision the value passed into the Math.acos
// function may be outside its domain of [-1, +1] which would return
// the value NaN which we do not want.
function acossafe(x) {
  if (x >= +1.0) return 0;
  if (x <= -1.0) return Math.PI;
  return Math.acos(x);
}

// Rotates a point about a fixed point at some angle 'a'
function rotatePoint(fp, pt, a) {
  var x = pt.x - fp.x;
  var y = pt.y - fp.y;
  var xRot = x * Math.cos(a) + y * Math.sin(a);
  var yRot = y * Math.cos(a) - x * Math.sin(a);
  return new Point(fp.x+xRot,fp.y+yRot);
}

// Given two circles this method finds the intersection
// point(s) of the two circles (if any exists)
function circleCircleIntersectionPoints(c1, c2) {

  var r, R, d, dx, dy, cx, cy, Cx, Cy;

  if (c1.r < c2.r) {
    r  = c1.r;  R = c2.r;
    cx = c1.x; cy = c1.y;
    Cx = c2.x; Cy = c2.y;
  } else {
    r  = c2.r; R  = c1.r;
    Cx = c1.x; Cy = c1.y;
    cx = c2.x; cy = c2.y;
  }

  // Compute the vector <dx, dy>
  dx = cx - Cx;
  dy = cy - Cy;

  // Find the distance between two points.
  d = Math.sqrt( dx*dx + dy*dy );

  // There are an infinite number of solutions
  // Seems appropriate to also return null
  if (d < EPS && Math.abs(R-r) < EPS) return [];

  // No intersection (circles centered at the 
  // same place with different size)
  else if (d < EPS) return [];

  var x = (dx / d) * R + Cx;
  var y = (dy / d) * R + Cy;
  var P = new Point(x, y);

  // Single intersection (kissing circles)
  if (Math.abs((R+r)-d) < EPS || Math.abs(R-(r+d)) < EPS) return [P];

  // No intersection. Either the small circle contained within 
  // big circle or circles are simply disjoint.
  if ( (d+r) < R || (R+r < d) ) return [];

  var C = new Point(Cx, Cy);
  var angle = acossafe((r*r-d*d-R*R)/(-2.0*d*R));
  var pt1 = rotatePoint(C, P, +angle);
  var pt2 = rotatePoint(C, P, -angle);
  return [pt1, pt2];

}
8
will.fiset

Pourquoi ne pas simplement utiliser 7 lignes de votre langage procédural préféré (ou une calculatrice programmable!) Comme ci-dessous.

En supposant que l'on vous donne des cordons P0 (x0, y0), des cordons P1 (x1, y1), r0 et r1 et que vous souhaitez trouver des cordons P3 (x3, y3):

d=sqr((x1-x0)^2 + (y1-y0)^2)
a=(r0^2-r1^2+d^2)/(2*d)
h=sqr(r0^2-a^2)
x2=x0+a*(x1-x0)/d   
y2=y0+a*(y1-y0)/d   
x3=x2+h*(y1-y0)/d       // also x3=x2-h*(y1-y0)/d
y3=y2-h*(x1-x0)/d       // also y3=y2+h*(x1-x0)/d
6
CuriousMarc

Essaye ça;

    def ri(cr1,cr2,cp1,cp2):
        int1=[]
        int2=[]
        ori=0
        if cp1[0]<cp2[0] and cp1[1]!=cp2[1]:
            p1=cp1
            p2=cp2
            r1=cr1
            r2=cr2
            if cp1[1]<cp2[1]:
                ori+=1
            Elif cp1[1]>cp2[1]:
                ori+=2        
        Elif cp1[0]>cp2[0] and cp1[1]!=cp2[1]:
            p1=cp2
            p2=cp1
            r1=cr2
            r2=cr1
            if p1[1]<p2[1]:
                ori+=1
            Elif p1[1]>p2[1]:
                ori+=2
        Elif cp1[0]==cp2[0]:
            ori+=4
            if cp1[1]>cp2[1]:
                p1=cp1
                p2=cp2
                r1=cr1
                r2=cr2
            Elif cp1[1]<cp2[1]:
                p1=cp2
                p2=cp1
                r1=cr2
                r2=cr1
        Elif cp1[1]==cp2[1]:
            ori+=3
            if cp1[0]>cp2[0]:
                p1=cp2
                p2=cp1
                r1=cr2
                r2=cr1
            Elif cp1[0]<cp2[0]:
                p1=cp1
                p2=cp2
                r1=cr1
                r2=cr2
        if ori==1:#+
            D=calc_dist(p1,p2)
            tr=r1+r2
            el=tr-D
            a=r1-el
            b=r2-el
            A=a+(el/2)
            B=b+(el/2)
            thta=math.degrees(math.acos(A/r1))
            rs=p2[1]-p1[1]
            rn=p2[0]-p1[0]
            Gd=rs/rn
            yint=p1[1]-((Gd)*p1[0])
            dty=calc_dist(p1,[0,yint])

            aa=p1[1]-yint
            bb=math.degrees(math.asin(aa/dty))
            d=90-bb
            e=180-d-thta
            g=(dty/math.sin(math.radians(e)))*math.sin(math.radians(thta))
            f=(g/math.sin(math.radians(thta)))*math.sin(math.radians(d))
            oty=yint+g
            h=f+r1
            i=90-e
            j=180-90-i
            l=math.sin(math.radians(i))*h
            k=math.cos(math.radians(i))*h
            iy2=oty-l
            ix2=k
            int2.append(ix2)
            int2.append(iy2)

            m=90+bb
            n=180-m-thta
            p=(dty/math.sin(math.radians(n)))*math.sin(math.radians(m))
            o=(p/math.sin(math.radians(m)))*math.sin(math.radians(thta))
            q=p+r1
            r=90-n
            s=math.sin(math.radians(r))*q
            t=math.cos(math.radians(r))*q
            otty=yint-o
            iy1=otty+s
            ix1=t
            int1.append(ix1)
            int1.append(iy1)
        Elif ori==2:#-
            D=calc_dist(p1,p2)
            tr=r1+r2
            el=tr-D
            a=r1-el
            b=r2-el
            A=a+(el/2)
            B=b+(el/2)
            thta=math.degrees(math.acos(A/r1))
            rs=p2[1]-p1[1]
            rn=p2[0]-p1[0]
            Gd=rs/rn
            yint=p1[1]-((Gd)*p1[0])
            dty=calc_dist(p1,[0,yint])

            aa=yint-p1[1]
            bb=math.degrees(math.asin(aa/dty))
            c=180-90-bb
            d=180-c-thta
            e=180-90-d
            f=math.tan(math.radians(e))*p1[0]
            g=math.sqrt(p1[0]**2+f**2)
            h=g+r1
            i=180-90-e
            j=math.sin(math.radians(e))*h
            jj=math.cos(math.radians(i))*h
            k=math.cos(math.radians(e))*h
            kk=math.sin(math.radians(i))*h
            l=90-bb
            m=90-e
            tt=l+m+thta
            n=(dty/math.sin(math.radians(m)))*math.sin(math.radians(thta))
            nn=(g/math.sin(math.radians(l)))*math.sin(math.radians(thta))
            oty=yint-n
            iy1=oty+j
            ix1=k
            int1.append(ix1)
            int1.append(iy1)

            o=bb+90
            p=180-o-thta
            q=90-p
            r=180-90-q
            s=(dty/math.sin(math.radians(p)))*math.sin(math.radians(o))
            t=(s/math.sin(math.radians(o)))*math.sin(math.radians(thta))
            u=s+r1
            v=math.sin(math.radians(r))*u
            vv=math.cos(math.radians(q))*u
            w=math.cos(math.radians(r))*u
            ww=math.sin(math.radians(q))*u
            ix2=v
            otty=yint+t
            iy2=otty-w
            int2.append(ix2)
            int2.append(iy2)

        Elif ori==3:#y
            D=calc_dist(p1,p2)
            tr=r1+r2
            el=tr-D
            a=r1-el
            b=r2-el
            A=a+(el/2)
            B=b+(el/2)
            b=math.sqrt(r1**2-A**2)
            int1.append(p1[0]+A)
            int1.append(p1[1]+b)
            int2.append(p1[0]+A)
            int2.append(p1[1]-b)
        Elif ori==4:#x
            D=calc_dist(p1,p2)
            tr=r1+r2
            el=tr-D
            a=r1-el
            b=r2-el
            A=a+(el/2)
            B=b+(el/2)
            b=math.sqrt(r1**2-A**2)
            int1.append(p1[0]+b)
            int1.append(p1[1]-A)
            int2.append(p1[0]-b)
            int2.append(p1[1]-A)
        return [int1,int2]
    def calc_dist(p1,p2):
        return math.sqrt((p2[0] - p1[0]) ** 2 +
                         (p2[1] - p1[1]) ** 2)
0
kulprit.001