web-dev-qa-db-fra.com

Trouver le plus grand rectangle contenant uniquement des zéros dans une matrice binaire N × N

Étant donné une matrice binaire NxN (contenant uniquement des 0 ou des 1), comment pouvons-nous rechercher le plus grand rectangle contenant tous les 0?

Exemple:

      I
    0 0 0 0 1 0
    0 0 1 0 0 1
II->0 0 0 0 0 0
    1 0 0 0 0 0
    0 0 0 0 0 1 <--IV
    0 0 1 0 0 0
            IV 

Pour l'exemple ci-dessus, il s'agit d'une matrice binaire 6 × 6. la valeur de retour dans ce cas sera Cellule 1: (2, 1) et Cellule 2: (4, 4). La sous-matrice résultante peut être carrée ou rectangulaire. La valeur de retour peut également être la taille de la plus grande sous-matrice de tous les 0, dans cet exemple 3 × 4.

67
Rajendra Uppal

Voici une solution basée sur le problème " " Le plus grand rectangle dans un histogramme " suggéré par @j_random_hacker dans les commentaires:

[Algorithm] fonctionne en itérant à travers rangées de haut en bas, pour chaque rangée résoudre ce problème , où le "barres" dans "l'histogramme" sont constituées de toutes les traces ininterrompues de zéros à la hausse qui commence à la ligne en cours (une colonne a la hauteur 0 si elle a un pouce en la ligne en cours).

La matrice d'entrée mat peut être un élément itératif arbitraire, par exemple un fichier ou un flux de réseau. Une seule ligne est nécessaire pour être disponible à la fois.

#!/usr/bin/env python
from collections import namedtuple
from operator import mul

Info = namedtuple('Info', 'start height')

def max_size(mat, value=0):
    """Find height, width of the largest rectangle containing all `value`'s."""
    it = iter(mat)
    hist = [(el==value) for el in next(it, [])]
    max_size = max_rectangle_size(hist)
    for row in it:
        hist = [(1+h) if el == value else 0 for h, el in Zip(hist, row)]
        max_size = max(max_size, max_rectangle_size(hist), key=area)
    return max_size

def max_rectangle_size(histogram):
    """Find height, width of the largest rectangle that fits entirely under
    the histogram.
    """
    stack = []
    top = lambda: stack[-1]
    max_size = (0, 0) # height, width of the largest rectangle
    pos = 0 # current position in the histogram
    for pos, height in enumerate(histogram):
        start = pos # position where rectangle starts
        while True:
            if not stack or height > top().height:
                stack.append(Info(start, height)) # Push
            Elif stack and height < top().height:
                max_size = max(max_size, (top().height, (pos - top().start)),
                               key=area)
                start, _ = stack.pop()
                continue
            break # height == top().height goes here

    pos += 1
    for start, height in stack:
        max_size = max(max_size, (height, (pos - start)), key=area)    
    return max_size

def area(size):
    return reduce(mul, size)

La solution est O(N), où N est le nombre d'éléments d'une matrice. Il nécessite O(ncols) plus de mémoire, où ncols est le nombre de colonnes d'une matrice.

La dernière version avec des tests est à https://Gist.github.com/776423

39
jfs

Veuillez regarder Maximisez la zone rectangulaire sous Histogramme puis continuez à lire la solution ci-dessous. 

Traverse the matrix once and store the following;

For x=1 to N and y=1 to N    
F[x][y] = 1 + F[x][y-1] if A[x][y] is 0 , else 0

Then for each row for x=N to 1 
We have F[x] -> array with heights of the histograms with base at x.
Use O(N) algorithm to find the largest area of rectangle in this histogram = H[x]

From all areas computed, report the largest.

La complexité temporelle est O (N * N) = O (N²) (pour une matrice binaire NxN)

Exemple: 

Initial array    F[x][y] array
 0 0 0 0 1 0     1 1 1 1 0 1
 0 0 1 0 0 1     2 2 0 2 1 0
 0 0 0 0 0 0     3 3 1 3 2 1
 1 0 0 0 0 0     0 4 2 4 3 2
 0 0 0 0 0 1     1 5 3 5 4 0
 0 0 1 0 0 0     2 6 0 6 5 1

 For x = N to 1
 H[6] = 2 6 0 6 5 1 -> 10 (5*2)
 H[5] = 1 5 3 5 4 0 -> 12 (3*4)
 H[4] = 0 4 2 4 3 2 -> 10 (2*5)
 H[3] = 3 3 1 3 2 1 -> 6 (3*2)
 H[2] = 2 2 0 2 1 0 -> 4 (2*2)
 H[1] = 1 1 1 1 0 1 -> 4 (1*4)

 The largest area is thus H[5] = 12
27
Sajal Jain

Voici une solution Python3, qui renvoie la position en plus de l'aire du plus grand rectangle:

#!/usr/bin/env python3

import numpy

s = '''0 0 0 0 1 0
0 0 1 0 0 1
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0'''

nrows = 6
ncols = 6
skip = 1
area_max = (0, [])

a = numpy.fromstring(s, dtype=int, sep=' ').reshape(nrows, ncols)
w = numpy.zeros(dtype=int, shape=a.shape)
h = numpy.zeros(dtype=int, shape=a.shape)
for r in range(nrows):
    for c in range(ncols):
        if a[r][c] == skip:
            continue
        if r == 0:
            h[r][c] = 1
        else:
            h[r][c] = h[r-1][c]+1
        if c == 0:
            w[r][c] = 1
        else:
            w[r][c] = w[r][c-1]+1
        minw = w[r][c]
        for dh in range(h[r][c]):
            minw = min(minw, w[r-dh][c])
            area = (dh+1)*minw
            if area > area_max[0]:
                area_max = (area, [(r-dh, c-minw+1, r, c)])

print('area', area_max[0])
for t in area_max[1]:
    print('Cell 1:({}, {}) and Cell 2:({}, {})'.format(*t))

Sortie:

area 12
Cell 1:(2, 1) and Cell 2:(4, 4)
9
tommy.carstensen

Voici la méthode de J.F. Sebastians traduite en C #:

private Vector2 MaxRectSize(int[] histogram) {
        Vector2 maxSize = Vector2.zero;
        int maxArea = 0;
        Stack<Vector2> stack = new Stack<Vector2>();

        int x = 0;
        for (x = 0; x < histogram.Length; x++) {
            int start = x;
            int height = histogram[x];
            while (true) {
                if (stack.Count == 0 || height > stack.Peek().y) {
                    stack.Push(new Vector2(start, height));

                } else if(height < stack.Peek().y) {
                    int tempArea = (int)(stack.Peek().y * (x - stack.Peek().x));
                    if(tempArea > maxArea) {
                        maxSize = new Vector2(stack.Peek().y, (x - stack.Peek().x));
                        maxArea = tempArea;
                    }

                    Vector2 popped = stack.Pop();
                    start = (int)popped.x;
                    continue;
                }

                break;
            }
        }

        foreach (Vector2 data in stack) {
            int tempArea = (int)(data.y * (x - data.x));
            if(tempArea > maxArea) {
                maxSize = new Vector2(data.y, (x - data.x));
                maxArea = tempArea;
            }
        }

        return maxSize;
    }

    public Vector2 GetMaximumFreeSpace() {
        // STEP 1:
        // build a seed histogram using the first row of grid points
        // example: [true, true, false, true] = [1,1,0,1]
        int[] hist = new int[gridSizeY];
        for (int y = 0; y < gridSizeY; y++) {
            if(!invalidPoints[0, y]) {
                hist[y] = 1;
            }
        }

        // STEP 2:
        // get a starting max area from the seed histogram we created above.
        // using the example from above, this value would be [1, 1], as the only valid area is a single point.
        // another example for [0,0,0,1,0,0] would be [1, 3], because the largest area of contiguous free space is 3.
        // Note that at this step, the heigh fo the found rectangle will always be 1 because we are operating on
        // a single row of data.
        Vector2 maxSize = MaxRectSize(hist);
        int maxArea = (int)(maxSize.x * maxSize.y);

        // STEP 3:
        // build histograms for each additional row, re-testing for new possible max rectangluar areas
        for (int x = 1; x < gridSizeX; x++) {
            // build a new histogram for this row. the values of this row are
            // 0 if the current grid point is occupied; otherwise, it is 1 + the value
            // of the previously found historgram value for the previous position. 
            // What this does is effectly keep track of the height of continous avilable spaces.
            // EXAMPLE:
            //      Given the following grid data (where 1 means occupied, and 0 means free; for clairty):
            //          INPUT:        OUTPUT:
            //      1.) [0,0,1,0]   = [1,1,0,1]
            //      2.) [0,0,1,0]   = [2,2,0,2]
            //      3.) [1,1,0,1]   = [0,0,1,0]
            //
            //  As such, you'll notice position 1,0 (row 1, column 0) is 2, because this is the height of contiguous
            //  free space.
            for (int y = 0; y < gridSizeY; y++) {                
                if(!invalidPoints[x, y]) {
                    hist[y] = 1 + hist[y];
                } else {
                    hist[y] = 0;
                }
            }

            // find the maximum size of the current histogram. If it happens to be larger
            // that the currently recorded max size, then it is the new max size.
            Vector2 maxSizeTemp = MaxRectSize(hist);
            int tempArea = (int)(maxSizeTemp.x * maxSizeTemp.y);
            if (tempArea > maxArea) {
                maxSize = maxSizeTemp;
                maxArea = tempArea;
            }
        }

        // at this point, we know the max size
        return maxSize;            
    }

Quelques points à noter à ce sujet:

  1. Cette version est destinée à être utilisée avec l’API Unity. Vous pouvez facilement rendre cela plus générique en remplaçant des instances de Vector2 par KeyValuePair. Vector2 n'est utilisé que pour un moyen pratique de stocker deux valeurs.
  2. invalidPoints [] est un tableau de bool, où true signifie que le point de la grille est "en cours d'utilisation" et que false signifie qu'il ne l'est pas.
3
dmarra

Solution avec complexité d'espace O(columns) [modifiable également en O(rows)] et complexité temporelle O (lignes * colonnes)

public int maximalRectangle(char[][] matrix) {
    int m = matrix.length;
    if (m == 0)
        return 0;
    int n = matrix[0].length;
    int maxArea = 0;
    int[] aux = new int[n];
    for (int i = 0; i < n; i++) {
        aux[i] = 0;
    }
    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
            aux[j] = matrix[i][j] - '0' + aux[j];
            maxArea = Math.max(maxArea, maxAreaHist(aux));
        }
    }
    return maxArea;
}

public int maxAreaHist(int[] heights) {
    int n = heights.length;
    Stack<Integer> stack = new Stack<Integer>();
    stack.Push(0);
    int maxRect = heights[0];
    int top = 0;
    int leftSideArea = 0;
    int rightSideArea = heights[0];
    for (int i = 1; i < n; i++) {
        if (stack.isEmpty() || heights[i] >= heights[stack.peek()]) {
            stack.Push(i);
        } else {
            while (!stack.isEmpty() && heights[stack.peek()] > heights[i]) {
                top = stack.pop();
                rightSideArea = heights[top] * (i - top);
                leftSideArea = 0;
                if (!stack.isEmpty()) {
                    leftSideArea = heights[top] * (top - stack.peek() - 1);
                } else {
                    leftSideArea = heights[top] * top;
                }
                maxRect = Math.max(maxRect, leftSideArea + rightSideArea);
            }
            stack.Push(i);
        }
    }
    while (!stack.isEmpty()) {
        top = stack.pop();
        rightSideArea = heights[top] * (n - top);
        leftSideArea = 0;
        if (!stack.isEmpty()) {
            leftSideArea = heights[top] * (top - stack.peek() - 1);
        } else {
            leftSideArea = heights[top] * top;
        }
        maxRect = Math.max(maxRect, leftSideArea + rightSideArea);
    }
    return maxRect;
}

Mais j'obtiens Time Limite excédé quand j'essaye ceci sur LeetCode. Y a-t-il une solution moins complexe?

3
Astha Gupta

Je propose une méthode O(nxn).

Tout d'abord, vous pouvez lister tous les rectangles vides maximum. Vide signifie qu'il ne couvre que les 0. Un rectangle vide maximum est tel qu'il ne peut pas être étendu dans une direction sans en couvrir (au moins) un 1.

Un article présentant un algorithme O(nxn) pour créer une telle liste est disponible sur www.ulg.ac.be/telecom/rectangles ainsi que le code source (non optimisé). Il n'est pas nécessaire de stocker la liste, il suffit d'appeler une fonction de rappel chaque fois qu'un rectangle est trouvé par l'algorithme et de ne stocker que le plus grand (ou de choisir un autre critère si vous le souhaitez). 

Notez qu'il existe une preuve (voir le papier) que le nombre de plus grands rectangles vides est limité par le nombre de pixels de l'image (nxn dans ce cas).

Par conséquent, la sélection du rectangle optimal peut être effectuée dans O (nxn) et la méthode globale est également O (nxn).

En pratique, cette méthode est très rapide et est utilisée pour l'analyse de flux vidéo en temps réel.

2
S. Piérard

Voici une version de la solution jfs, qui fournit également la position du plus grand rectangle:

from collections import namedtuple
from operator import mul

Info = namedtuple('Info', 'start height')

def max_rect(mat, value=0):
    """returns (height, width, left_column, bottom_row) of the largest rectangle 
    containing all `value`'s.

    Example:
    [[0, 0, 0, 0, 0, 0, 0, 0, 3, 2],
     [0, 4, 0, 2, 4, 0, 0, 1, 0, 0],
     [1, 0, 1, 0, 0, 0, 3, 0, 0, 4],
     [0, 0, 0, 0, 4, 2, 0, 0, 0, 0],
     [0, 0, 0, 2, 0, 0, 0, 0, 0, 0],
     [4, 3, 0, 0, 1, 2, 0, 0, 0, 0],
     [3, 0, 0, 0, 2, 0, 0, 0, 0, 4],
     [0, 0, 0, 1, 0, 3, 2, 4, 3, 2],
     [0, 3, 0, 0, 0, 2, 0, 1, 0, 0]]
     gives: (3, 4, 6, 5)
    """
    it = iter(mat)
    hist = [(el==value) for el in next(it, [])]
    max_rect = max_rectangle_size(hist) + (0,)
    for irow,row in enumerate(it):
        hist = [(1+h) if el == value else 0 for h, el in Zip(hist, row)]
        max_rect = max(max_rect, max_rectangle_size(hist) + (irow+1,), key=area)
        # irow+1, because we already used one row for initializing max_rect
    return max_rect

def max_rectangle_size(histogram):
    stack = []
    top = lambda: stack[-1]
    max_size = (0, 0, 0) # height, width and start position of the largest rectangle
    pos = 0 # current position in the histogram
    for pos, height in enumerate(histogram):
        start = pos # position where rectangle starts
        while True:
            if not stack or height > top().height:
                stack.append(Info(start, height)) # Push
            Elif stack and height < top().height:
                max_size = max(max_size, (top().height, (pos - top().start), top().start), key=area)
                start, _ = stack.pop()
                continue
            break # height == top().height goes here

    pos += 1
    for start, height in stack:
        max_size = max(max_size, (height, (pos - start), start), key=area)

    return max_size

def area(size):
    return size[0] * size[1]
0
MiB_Coder