Je souhaite définir le zoom de la vue cartographique sur un rayon de 1 km, mais je ne vois pas comment?
La doc indique que le niveau de zoom 1 mappera l'équateur terrestre à 256 pixels. Alors, comment calculer le niveau de zoom que je dois définir pour que la vue de la carte affiche une zone dans un rayon de 1 km?
METTRE À JOUR:
Après avoir lu quelques articles de blog, j'ai écrit le code suivant:
private int calculateZoomLevel() {
double equatorLength = 6378140; // in meters
double widthInPixels = screenWidth;
double metersPerPixel = equatorLength / 256;
int zoomLevel = 1;
while ((metersPerPixel * widthInPixels) > 2000) {
metersPerPixel /= 2;
++zoomLevel;
}
Log.i("ADNAN", "zoom level = "+zoomLevel);
return zoomLevel;
}
L'idée est que je calcule d'abord mètres par pixel dans le niveau de zoom 1, qui, selon Google, montre l'équateur de la Terre en utilisant 256 pixels. Désormais, chaque niveau de zoom ultérieur est agrandi de 2, donc je divise par deux le nombre de mètres par pixel pour chaque niveau de zoom. Je le fais jusqu’à ce que j’ai un niveau de zoom où mètres par pixel multiplié par la largeur de l’écran me donne moins de 2 000 soit 2 km de diamètre.
Mais je ne pense pas que le niveau de zoom que je reçois montre la carte de 2 km de rayon. Quelqu'un peut-il me dire ce que je fais mal ici?
Le code suivant est ce qui a fini par utiliser. Étant donné la largeur de l'écran et le fait qu'au niveau de zoom 1, l'équateur de la Terre mesure 256 pixels de long et que chaque niveau de zoom ultérieur double le nombre de pixels nécessaires pour représenter l'équateur terrestre, la fonction suivante renvoie le niveau de zoom où l'écran affichera une zone de 2Km de largeur.
private int calculateZoomLevel(int screenWidth) {
double equatorLength = 40075004; // in meters
double widthInPixels = screenWidth;
double metersPerPixel = equatorLength / 256;
int zoomLevel = 1;
while ((metersPerPixel * widthInPixels) > 2000) {
metersPerPixel /= 2;
++zoomLevel;
}
Log.i("ADNAN", "zoom level = "+zoomLevel);
return zoomLevel;
}
bien que cette réponse soit logique et que je la trouve fonctionnelle, mais les résultats ne sont pas précis, je ne sais pas pourquoi, mais je suis fatigué de cette approche et cette technique est bien plus précise.
1) Faire un cercle sur l'objet avec le rayon souhaité
Circle circle = mGoogleMap.addCircle(new CircleOptions().center(new LatLng(latitude, longitude)).radius(getRadiusInMeters()).strokeColor(Color.RED));
circle.setVisible(true);
getZoomLevel(circle);
2) Passez cet objet à cette fonction et définissez le niveau de zoom Voici un lien
public int getZoomLevel(Circle circle) {
if (circle != null){
double radius = circle.getRadius();
double scale = radius / 500;
zoomLevel =(int) (16 - Math.log(scale) / Math.log(2));
}
return zoomLevel;
}
J'ai fini par utiliser les utils de:
https://github.com/googlemaps/Android-maps-utils
J'ai extrait la classe de la bibliothèque, vous n'avez donc pas besoin de toute la bibliothèque. Au lieu de définir le niveau de zoom, vous utilisez des limites. Le résultat est le même.
Code indiquant exactement 1 kilomètre:
animateToMeters(1000);
private void animateToMeters(int meters){
int mapHeightInDP = 200;
Resources r = getResources();
int mapSideInPixels = (int) TypedValue.applyDimension(TypedValue.COMPLEX_UNIT_DIP, mapHeightInDP, r.getDisplayMetrics());
LatLng point = new LatLng(0, 0);
LatLngBounds latLngBounds = calculateBounds(point, meters);
if(latLngBounds != null){
cameraUpdate = CameraUpdateFactory.newLatLngBounds(latLngBounds, mapSideInPixels, mapSideInPixels, MARKER_BOUNDS);
if(mMap != null)
mMap.animateCamera(cameraUpdate);
}
}
private LatLngBounds calculateBounds(LatLng center, double radius) {
return new LatLngBounds.Builder().
include(SphericalUtil.computeOffset(center, radius, 0)).
include(SphericalUtil.computeOffset(center, radius, 90)).
include(SphericalUtil.computeOffset(center, radius, 180)).
include(SphericalUtil.computeOffset(center, radius, 270)).build();
}
La classe extraite (légèrement modifiée) de la bibliothèque:
public class SphericalUtil {
static final double EARTH_RADIUS = 6371009;
/**
* Returns hav() of distance from (lat1, lng1) to (lat2, lng2) on the unit sphere.
*/
static double havDistance(double lat1, double lat2, double dLng) {
return hav(lat1 - lat2) + hav(dLng) * cos(lat1) * cos(lat2);
}
/**
* Returns haversine(angle-in-radians).
* hav(x) == (1 - cos(x)) / 2 == sin(x / 2)^2.
*/
static double hav(double x) {
double sinHalf = sin(x * 0.5);
return sinHalf * sinHalf;
}
/**
* Computes inverse haversine. Has good numerical stability around 0.
* arcHav(x) == acos(1 - 2 * x) == 2 * asin(sqrt(x)).
* The argument must be in [0, 1], and the result is positive.
*/
static double arcHav(double x) {
return 2 * asin(sqrt(x));
}
private SphericalUtil() {}
/**
* Returns the heading from one LatLng to another LatLng. Headings are
* expressed in degrees clockwise from North within the range [-180,180).
* @return The heading in degrees clockwise from north.
*/
public static double computeHeading(LatLng from, LatLng to) {
// http://williams.best.vwh.net/avform.htm#Crs
double fromLat = toRadians(from.latitude);
double fromLng = toRadians(from.longitude);
double toLat = toRadians(to.latitude);
double toLng = toRadians(to.longitude);
double dLng = toLng - fromLng;
double heading = atan2(
sin(dLng) * cos(toLat),
cos(fromLat) * sin(toLat) - sin(fromLat) * cos(toLat) * cos(dLng));
return wrap(toDegrees(heading), -180, 180);
}
/**
* Returns the LatLng resulting from moving a distance from an Origin
* in the specified heading (expressed in degrees clockwise from north).
* @param from The LatLng from which to start.
* @param distance The distance to travel.
* @param heading The heading in degrees clockwise from north.
*/
public static LatLng computeOffset(LatLng from, double distance, double heading) {
distance /= EARTH_RADIUS;
heading = toRadians(heading);
// http://williams.best.vwh.net/avform.htm#LL
double fromLat = toRadians(from.latitude);
double fromLng = toRadians(from.longitude);
double cosDistance = cos(distance);
double sinDistance = sin(distance);
double sinFromLat = sin(fromLat);
double cosFromLat = cos(fromLat);
double sinLat = cosDistance * sinFromLat + sinDistance * cosFromLat * cos(heading);
double dLng = atan2(
sinDistance * cosFromLat * sin(heading),
cosDistance - sinFromLat * sinLat);
return new LatLng(toDegrees(asin(sinLat)), toDegrees(fromLng + dLng));
}
/**
* Returns the location of Origin when provided with a LatLng destination,
* meters travelled and original heading. Headings are expressed in degrees
* clockwise from North. This function returns null when no solution is
* available.
* @param to The destination LatLng.
* @param distance The distance travelled, in meters.
* @param heading The heading in degrees clockwise from north.
*/
public static LatLng computeOffsetOrigin(LatLng to, double distance, double heading) {
heading = toRadians(heading);
distance /= EARTH_RADIUS;
// http://lists.maptools.org/pipermail/proj/2008-October/003939.html
double n1 = cos(distance);
double n2 = sin(distance) * cos(heading);
double n3 = sin(distance) * sin(heading);
double n4 = sin(toRadians(to.latitude));
// There are two solutions for b. b = n2 * n4 +/- sqrt(), one solution results
// in the latitude outside the [-90, 90] range. We first try one solution and
// back off to the other if we are outside that range.
double n12 = n1 * n1;
double discriminant = n2 * n2 * n12 + n12 * n12 - n12 * n4 * n4;
if (discriminant < 0) {
// No real solution which would make sense in LatLng-space.
return null;
}
double b = n2 * n4 + sqrt(discriminant);
b /= n1 * n1 + n2 * n2;
double a = (n4 - n2 * b) / n1;
double fromLatRadians = atan2(a, b);
if (fromLatRadians < -PI / 2 || fromLatRadians > PI / 2) {
b = n2 * n4 - sqrt(discriminant);
b /= n1 * n1 + n2 * n2;
fromLatRadians = atan2(a, b);
}
if (fromLatRadians < -PI / 2 || fromLatRadians > PI / 2) {
// No solution which would make sense in LatLng-space.
return null;
}
double fromLngRadians = toRadians(to.longitude) -
atan2(n3, n1 * cos(fromLatRadians) - n2 * sin(fromLatRadians));
return new LatLng(toDegrees(fromLatRadians), toDegrees(fromLngRadians));
}
/**
* Returns the LatLng which lies the given fraction of the way between the
* Origin LatLng and the destination LatLng.
* @param from The LatLng from which to start.
* @param to The LatLng toward which to travel.
* @param fraction A fraction of the distance to travel.
* @return The interpolated LatLng.
*/
public static LatLng interpolate(LatLng from, LatLng to, double fraction) {
// http://en.wikipedia.org/wiki/Slerp
double fromLat = toRadians(from.latitude);
double fromLng = toRadians(from.longitude);
double toLat = toRadians(to.latitude);
double toLng = toRadians(to.longitude);
double cosFromLat = cos(fromLat);
double cosToLat = cos(toLat);
// Computes Spherical interpolation coefficients.
double angle = computeAngleBetween(from, to);
double sinAngle = sin(angle);
if (sinAngle < 1E-6) {
return from;
}
double a = sin((1 - fraction) * angle) / sinAngle;
double b = sin(fraction * angle) / sinAngle;
// Converts from polar to vector and interpolate.
double x = a * cosFromLat * cos(fromLng) + b * cosToLat * cos(toLng);
double y = a * cosFromLat * sin(fromLng) + b * cosToLat * sin(toLng);
double z = a * sin(fromLat) + b * sin(toLat);
// Converts interpolated vector back to polar.
double lat = atan2(z, sqrt(x * x + y * y));
double lng = atan2(y, x);
return new LatLng(toDegrees(lat), toDegrees(lng));
}
/**
* Returns distance on the unit sphere; the arguments are in radians.
*/
private static double distanceRadians(double lat1, double lng1, double lat2, double lng2) {
return arcHav(havDistance(lat1, lat2, lng1 - lng2));
}
/**
* Returns the angle between two LatLngs, in radians. This is the same as the distance
* on the unit sphere.
*/
static double computeAngleBetween(LatLng from, LatLng to) {
return distanceRadians(toRadians(from.latitude), toRadians(from.longitude),
toRadians(to.latitude), toRadians(to.longitude));
}
/**
* Returns the distance between two LatLngs, in meters.
*/
public static double computeDistanceBetween(LatLng from, LatLng to) {
return computeAngleBetween(from, to) * EARTH_RADIUS;
}
/**
* Returns the length of the given path, in meters, on Earth.
*/
public static double computeLength(List<LatLng> path) {
if (path.size() < 2) {
return 0;
}
double length = 0;
LatLng prev = path.get(0);
double prevLat = toRadians(prev.latitude);
double prevLng = toRadians(prev.longitude);
for (LatLng point : path) {
double lat = toRadians(point.latitude);
double lng = toRadians(point.longitude);
length += distanceRadians(prevLat, prevLng, lat, lng);
prevLat = lat;
prevLng = lng;
}
return length * EARTH_RADIUS;
}
/**
* Returns the area of a closed path on Earth.
* @param path A closed path.
* @return The path's area in square meters.
*/
public static double computeArea(List<LatLng> path) {
return abs(computeSignedArea(path));
}
/**
* Returns the signed area of a closed path on Earth. The sign of the area may be used to
* determine the orientation of the path.
* "inside" is the surface that does not contain the South Pole.
* @param path A closed path.
* @return The loop's area in square meters.
*/
public static double computeSignedArea(List<LatLng> path) {
return computeSignedArea(path, EARTH_RADIUS);
}
/**
* Returns the signed area of a closed path on a sphere of given radius.
* The computed area uses the same units as the radius squared.
* Used by SphericalUtilTest.
*/
static double computeSignedArea(List<LatLng> path, double radius) {
int size = path.size();
if (size < 3) { return 0; }
double total = 0;
LatLng prev = path.get(size - 1);
double prevTanLat = tan((PI / 2 - toRadians(prev.latitude)) / 2);
double prevLng = toRadians(prev.longitude);
// For each Edge, accumulate the signed area of the triangle formed by the North Pole
// and that Edge ("polar triangle").
for (LatLng point : path) {
double tanLat = tan((PI / 2 - toRadians(point.latitude)) / 2);
double lng = toRadians(point.longitude);
total += polarTriangleArea(tanLat, lng, prevTanLat, prevLng);
prevTanLat = tanLat;
prevLng = lng;
}
return total * (radius * radius);
}
/**
* Returns the signed area of a triangle which has North Pole as a vertex.
* Formula derived from "Area of a spherical triangle given two edges and the included angle"
* as per "Spherical Trigonometry" by Todhunter, page 71, section 103, point 2.
* See http://books.google.com/books?id=3uBHAAAAIAAJ&pg=PA71
* The arguments named "tan" are tan((pi/2 - latitude)/2).
*/
private static double polarTriangleArea(double tan1, double lng1, double tan2, double lng2) {
double deltaLng = lng1 - lng2;
double t = tan1 * tan2;
return 2 * atan2(t * sin(deltaLng), 1 + t * cos(deltaLng));
}
/**
* Wraps the given value into the inclusive-exclusive interval between min and max.
* @param n The value to wrap.
* @param min The minimum.
* @param max The maximum.
*/
static double wrap(double n, double min, double max) {
return (n >= min && n < max) ? n : (mod(n - min, max - min) + min);
}
/**
* Returns the non-negative remainder of x / m.
* @param x The operand.
* @param m The modulus.
*/
static double mod(double x, double m) {
return ((x % m) + m) % m;
}
}
Google Maps semble fonctionner étroitement à miles/pixel. Au zoom = 13, 1 mile = 100 pixels. 2 milles = 200 pixels. Chaque facteur de zoom augmente ou diminue d'un facteur 2. Par conséquent, avec le zoom 14, 1 mile = 200 pixels et avec le zoom 12, 1 mile = 50 pixels.
J'ai converti la réponse acceptée pour renvoyer une valeur double, car la bibliothèque Android de Google Maps utilise des niveaux de zoom à virgule flottante et prend également en compte les latitudes éloignées de l'équateur.
public static double getZoomForMetersWide (
final double desiredMeters,
final double mapWidth,
final double latitude )
{
final double latitudinalAdjustment = Math.cos( Math.PI * latitude / 180.0 );
final double arg = EQUATOR_LENGTH * mapWidth * latitudinalAdjustment / ( desiredMeters * 256.0 );
return Math.log( arg ) / Math.log( 2.0 );
}
Par ailleurs, pour obtenir les meilleurs résultats sur Android, ne transmettez pas le nombre de pixels réel de la vue, mais redimensionnez la dimension en fonction de la densité de pixels de l'appareil.
DisplayMetrics metrics = getResources().getDisplayMetrics();
float mapWidth = mapView.getWidth() / metrics.scaledDensity;
J'espère que ça aide quelqu'un.
Utiliser la boucle pour calculer le niveau de zoom est très naïf ..__ Il est préférable d'utiliser les mathématiques longtemps.
Voici la fonction (type de retour: float)
public static double calcZoom(int visible_distance, int img_width)
{
// visible_distance -> in meters
// img_width -> in pixels
visible_distance = Math.abs(visible_distance);
double equator_length = 40075016; // in meters
// for an immage of 256 pixel pixel
double zoom256 = Math.log(equator_length/visible_distance)/Math.log(2);
// adapt the zoom to the image size
int x = (int) (Math.log(img_width/256)/Math.log(2));
double zoom = zoom256 + x;
return zoom;
}
exemple d'appel:
public static void main(String[] args)
{
// computes the zoom for 1km=1000m for an image having 256 width
double zoom = MainClass.calcZoom(1000, 256);
System.out.println("zoom: " + String.valueOf(zoom));
return;
}
Les formules mathématiques permettant de calculer le niveau de zoom sont les suivantes:
equator_length = 40075016
zoom_level = logE(equator_length/distance)/logE(2) + logE(img_width/256)/logE(2)
// The zoom_level computed here is a float number.
C'est tout les gens! :-)
ATTENTION: La solution ci-dessus comme réponse acceptée ne fonctionne que pour les niveaux de zoom situés près de l'équateur . Si vous souhaitez une solution qui fonctionne avec toutes les latitudes, vous avez besoin de la longueur du parallèle à la même le niveau de zoom que vous souhaitez calculer. La méthode calcZoom
devient
private double calcZoom(int visible_distance, int img_width, double atLatitude) {
// visible_distance -> in meters
// img_width -> in pixels
double parallel_length = this.calcParallelLegth(atLatitude); // in meters
// for an immage of 256 pixel pixel
zoom256 = Math.log(parallel_length/visible_distance))/Math.log(2)
// adapt the zoom to the image size
x = (int) Math.log(img_width/256)/Math.log(2)
zoom = zoom256 + x
return zoom;
}
Où this.calcParallelLegth(atLatitude)
reprend la longueur du parallèle à la latitude atLatitude
.
Vous pouvez calculer la longueur vous-même avec une bibliothèque (en utilisant de préférence les formules de Vincenty).
Alternativement
Si vous ne disposez pas d'une telle bibliothèque (ou si vous ne recherchez pas de bibliothèque, ou si vous voulez juste un code complet qui fonctionne) au bas de cette réponse, vous pouvez trouver le code de travail complet avec une implémentation de double calcParallelLegth(double atLatitude)
qui utilise une table (calculée à l’aide des formules de Vincenty) avec une longueur parallèle à toutes les latitudes avec 3% de décalage.
REMARQUE:
VOUS DEVEZ LIRE CI-DESSOUS SEULEMENT SI VOUS ET COMPRENEZ LA FORMULE (OU VÉRIFIEZ SI LA FORMULE IS À DROITE)
Explication des formules ci-dessous:
En termes simples!
Divisons le problème en deux parties.
Partie 1
calcule le zoom pour une image de taille 256x256
Partie 2
adapter le zoom pour une image de taille différente
Résolution de la partie 1
La taille de l'image est de 256x256 . Le niveau de zoom 0 indique l'équateur entier.
chaque niveau de zoom suivant, laissez-moi voir la moitié puis avant.
L’équateur a une longueur de 40 075 016 mètres (selon WGS-84 (* 1) et Formules de Vincenty (* 2) )
zoom=0 -> 40,075,016 / 1 = 40,075,016 meters visible Note: 2^0=1
zoom=1 -> 40,075,016 / 2 = 20,037,508 meters visible Note: 2^1=2
zoom=2 -> 40,075,016 / 4 = 10,018,754 meters visible Note: 2^2=4
zoom=3 -> 40,075,016 / 8 = 5,009,377 meters visible Note: 2^3=8
zoom=4 -> 40,075,016 / 16 = 2,504,688.5 meters visible Note: 2^4=16
zoom=5 -> 40,075,016 / 2^5 = 1,252,344.25 meters visible Note= 2^5=32
zoom=6 -> 40,075,016 / 2^6 = 636,172.125 meters visible Note= 2^6=64
...
zoom -> equator_length / 2^zoom = visible_distance
Comme vous pouvez le voir ci-dessus, chaque niveau de zoom ultérieur me laisse voir la moitié avant.
zoom est le niveau de zoom souhaité.
visible_distance est le nombre de mètres que l’image affiche horizontalement.
si vous voulez 1 km, vous devez calculer zoom avec visible_distance = 1000
Découvrons les formules de zoom.
Voici où les maths font leur magie (magie "ennuyeuse" magie).
equator_length / 2^zoom = visible_distance ->
-> equator_length / visible_distance = 2^zoom ->
-> log2(equator_length / visible_distance) = log2(2^zoom) -> (*3)
-> log2(equator_length / visible_distance) = zoom*log2(2) -> (*4)
-> log2(equator_length / visible_distance) = zoom*1 -> (*5)
-> log2(equator_length / visible_distance) = zoom ->
-> logE(equator_length / visible_distance)/logE(2) = zoom -> (*6)
les formules de niveau de zoom pour une image 256x256 sont les suivantes:
zoom256 = logE(equator_length/visible_distance) / logE(2)
Partie 1 FAIT !!
Résolution de la partie 2
Adaptez le zoom à la taille de l'image souhaitée.
Chaque fois que la largeur de l'image double, le zoom nécessaire pour voir l'équateur entier augmente de un.
Exemple:
Dans une image 512x512 le zoom nécessaire pour voir l’équateur entier est 1 . Dans une image 1024x1024 le zoom nécessaire pour voir l’équateur entier est 2 . l'équateur est 3.
Cela dit
width= 256 -> 256/256 = 1 -> zoom=0 (needed to see the whole equator)
width= 512 -> 512/256 = 2 -> zoom=1 (needed to see the whole equator)
width=1024 -> 1024/256 = 4 -> zoom=2 (needed to see the whole equator)
width=2048 -> 2048/256 = 8 -> zoom=3 (needed to see the whole equator)
width=4096 -> 4096/256 = 2^4 -> zoom=4 (needed to see the whole equator)
width=4096 -> 4096/256 = 2^5 -> zoom=5 (needed to see the whole equator)
... width -> width/256 = 2 ^ x -> zoom = x (nécessaire pour voir l'équateur entier)
cela signifie que (zoom_level is
- with an 512x512 image, the zoom needed is zoom256+1
- with an 1024x1024 image, the zoom needed is zoom256+2
- with an 2048x2048 image, the zoom needed is zoom256+3
...
- with an WIDTHxHEIGHT image, the zoom needed is zoom256+x
Il faut x pour adapter le zoom à la taille de l'image souhaitée.
Donc, il s’agit de l’extrait x de
width/256 = 2^x
Faisons le
width/256 = 2^x ->
-> log2(width/256) = log2(2^x) -> (*3)
-> log2(width/256) = x * log2(2) -> (*4)
-> log2(width/256) = x * 1 -> (*5)
-> log2(width/256) = x ->
-> logE(width/256) / logE(2) = x -> (*6)
Nous avons maintenant la formule x.
les formules de niveau de zoom pour une image WIDTHxHEIGHT sont les suivantes:
zoom = zoom256 + x
Donc, si vous voulez 1 km visible dans une image 512x512 que
zoom256 = logE(40075016/1000) / logE(2) = 15.29041547592718
x = logE(512/256) / logE(2) = 1
zoom = zoom256 + z = 15.29041547592718 + 1 = 16.29041547592718
Si ce doit être un entier
zoom = floor(zoom) = 16
TERMINÉ!
(*3) expr1=expr2 <-> log(expr1)=log(expr2)
(*4) logN(a^b) = b * logN(a)
(*5) logN(N) = 1
(*6) logN(expr) = log(expr)/log(N)
(*7) log(a/b) = log(a) - log(b)
Voici le code complet qui calcule le niveau de zoom à chaque largeur d'image.
class MainClass
{
public static int getParallelLength(double atLatitude)
{
int FR_LAT = 0; // from latitude
int TO_LAT = 1; // to latidude
int PA_LEN = 2; // parallel length in meters)
int PC_ERR = 3; // percentage error
// fr_lat| to_lat | par_len| perc_err
double tbl[][] = {
{ 0.00, 12.656250000000000, 40075016, 2.410},
{12.66, 17.402343750000000, 39107539, 2.180},
{17.40, 22.148437500000000, 38252117, 2.910},
{22.15, 25.708007812500000, 37135495, 2.700},
{25.71, 28.377685546875000, 36130924, 2.330},
{28.38, 31.047363281250000, 35285940, 2.610},
{31.05, 33.717041015625000, 34364413, 2.890},
{33.72, 35.719299316406250, 33368262, 2.380},
{35.72, 37.721557617187500, 32573423, 2.560},
{37.72, 39.723815917968750, 31738714, 2.750},
{39.72, 41.726074218750000, 30865121, 2.950},
{41.73, 43.227767944335938, 29953681, 2.360},
{43.23, 44.729461669921875, 29245913, 2.480},
{44.73, 46.231155395507812, 28517939, 2.620},
{46.23, 47.732849121093750, 27770248, 2.760},
{47.73, 49.234542846679688, 27003344, 2.900},
{49.23, 50.360813140869141, 26217745, 2.290},
{50.36, 51.487083435058594, 25616595, 2.380},
{51.49, 52.613353729248047, 25005457, 2.480},
{52.61, 53.739624023437500, 24384564, 2.580},
{53.74, 54.865894317626953, 23754152, 2.690},
{54.87, 55.992164611816406, 23114464, 2.800},
{55.99, 57.118434906005859, 22465745, 2.920},
{57.12, 57.963137626647949, 21808245, 2.280},
{57.96, 58.807840347290039, 21309508, 2.360},
{58.81, 59.652543067932129, 20806081, 2.440},
{59.65, 60.497245788574219, 20298074, 2.520},
{60.50, 61.341948509216309, 19785597, 2.610},
{61.34, 62.186651229858398, 19268762, 2.700},
{62.19, 63.031353950500488, 18747680, 2.800},
{63.03, 63.876056671142578, 18222465, 2.900},
{63.88, 64.509583711624146, 17693232, 2.250},
{64.51, 65.143110752105713, 17293739, 2.320},
{65.14, 65.776637792587280, 16892100, 2.390},
{65.78, 66.410164833068848, 16488364, 2.460},
{66.41, 67.043691873550415, 16082582, 2.530},
{67.04, 67.677218914031982, 15674801, 2.610},
{67.68, 68.310745954513550, 15265074, 2.690},
{68.31, 68.944272994995117, 14853450, 2.780},
{68.94, 69.577800035476685, 14439980, 2.870},
{69.58, 70.211327075958252, 14024715, 2.970},
{70.21, 70.686472356319427, 13607707, 2.300},
{70.69, 71.161617636680603, 13293838, 2.360},
{71.16, 71.636762917041779, 12979039, 2.430},
{71.64, 72.111908197402954, 12663331, 2.500},
{72.11, 72.587053477764130, 12346738, 2.570},
{72.59, 73.062198758125305, 12029281, 2.640},
{73.06, 73.537344038486481, 11710981, 2.720},
{73.54, 74.012489318847656, 11391862, 2.800},
{74.01, 74.487634599208832, 11071946, 2.890},
{74.49, 74.962779879570007, 10751254, 2.980},
{74.96, 75.319138839840889, 10429810, 2.310},
{75.32, 75.675497800111771, 10188246, 2.370},
{75.68, 76.031856760382652, 9946280, 2.430},
{76.03, 76.388215720653534, 9703923, 2.500},
{76.39, 76.744574680924416, 9461183, 2.560},
{76.74, 77.100933641195297, 9218071, 2.640},
{77.10, 77.457292601466179, 8974595, 2.710},
{77.46, 77.813651561737061, 8730766, 2.790},
{77.81, 78.170010522007942, 8486593, 2.880},
{78.17, 78.526369482278824, 8242085, 2.970},
{78.53, 78.793638702481985, 7997252, 2.290},
{78.79, 79.060907922685146, 7813420, 2.350},
{79.06, 79.328177142888308, 7629414, 2.410},
{79.33, 79.595446363091469, 7445240, 2.470},
{79.60, 79.862715583294630, 7260900, 2.540},
{79.86, 80.129984803497791, 7076399, 2.600},
{80.13, 80.397254023700953, 6891742, 2.680},
{80.40, 80.664523243904114, 6706931, 2.750},
{80.66, 80.931792464107275, 6521972, 2.830},
{80.93, 81.199061684310436, 6336868, 2.920},
{81.20, 81.399513599462807, 6151624, 2.250},
{81.40, 81.599965514615178, 6012600, 2.310},
{81.60, 81.800417429767549, 5873502, 2.360},
{81.80, 82.000869344919920, 5734331, 2.420},
{82.00, 82.201321260072291, 5595088, 2.480},
{82.20, 82.401773175224662, 5455775, 2.550},
{82.40, 82.602225090377033, 5316394, 2.620},
{82.60, 82.802677005529404, 5176947, 2.690},
{82.80, 83.003128920681775, 5037435, 2.770},
{83.00, 83.203580835834146, 4897860, 2.850},
{83.20, 83.404032750986516, 4758224, 2.930},
{83.40, 83.554371687350795, 4618528, 2.260},
{83.55, 83.704710623715073, 4513719, 2.320},
{83.70, 83.855049560079351, 4408878, 2.370},
{83.86, 84.005388496443629, 4304006, 2.430},
{84.01, 84.155727432807907, 4199104, 2.490},
{84.16, 84.306066369172186, 4094172, 2.560},
{84.31, 84.456405305536464, 3989211, 2.630},
{84.46, 84.606744241900742, 3884223, 2.700},
{84.61, 84.757083178265020, 3779207, 2.770},
{84.76, 84.907422114629298, 3674165, 2.850},
{84.91, 85.057761050993577, 3569096, 2.940},
{85.06, 85.170515253266785, 3464003, 2.270},
{85.17, 85.283269455539994, 3385167, 2.320},
{85.28, 85.396023657813203, 3306318, 2.380},
{85.40, 85.508777860086411, 3227456, 2.440},
{85.51, 85.621532062359620, 3148581, 2.500},
{85.62, 85.734286264632829, 3069693, 2.570},
{85.73, 85.847040466906037, 2990793, 2.630},
{85.85, 85.959794669179246, 2911882, 2.710},
{85.96, 86.072548871452454, 2832959, 2.780},
{86.07, 86.185303073725663, 2754025, 2.860},
{86.19, 86.298057275998872, 2675080, 2.950},
{86.30, 86.382622927703778, 2596124, 2.280},
{86.38, 86.467188579408685, 2536901, 2.330},
{86.47, 86.551754231113591, 2477672, 2.390},
{86.55, 86.636319882818498, 2418437, 2.440},
{86.64, 86.720885534523404, 2359197, 2.510},
{86.72, 86.805451186228311, 2299952, 2.570},
{86.81, 86.890016837933217, 2240701, 2.640},
{86.89, 86.974582489638124, 2181446, 2.710},
{86.97, 87.059148141343030, 2122186, 2.790},
{87.06, 87.143713793047937, 2062921, 2.870},
{87.14, 87.228279444752843, 2003652, 2.950},
{87.23, 87.291703683531523, 1944378, 2.280},
{87.29, 87.355127922310203, 1899919, 2.340},
{87.36, 87.418552161088883, 1855459, 2.390},
{87.42, 87.481976399867563, 1810996, 2.450},
{87.48, 87.545400638646242, 1766531, 2.510},
{87.55, 87.608824877424922, 1722063, 2.580},
{87.61, 87.672249116203602, 1677594, 2.650},
{87.67, 87.735673354982282, 1633122, 2.720},
{87.74, 87.799097593760962, 1588648, 2.790},
{87.80, 87.862521832539642, 1544172, 2.880},
{87.86, 87.925946071318322, 1499695, 2.960},
{87.93, 87.973514250402332, 1455215, 2.290},
{87.97, 88.021082429486341, 1421854, 2.340},
{88.02, 88.068650608570351, 1388493, 2.400},
{88.07, 88.116218787654361, 1355130, 2.460},
{88.12, 88.163786966738371, 1321766, 2.520},
{88.16, 88.211355145822381, 1288401, 2.580},
{88.21, 88.258923324906391, 1255036, 2.650},
{88.26, 88.306491503990401, 1221669, 2.730},
{88.31, 88.354059683074411, 1188302, 2.800},
{88.35, 88.401627862158421, 1154934, 2.880},
{88.40, 88.449196041242431, 1121565, 2.970},
{88.45, 88.484872175555438, 1088195, 2.290},
{88.48, 88.520548309868445, 1063167, 2.350},
{88.52, 88.556224444181453, 1038139, 2.410},
{88.56, 88.591900578494460, 1013110, 2.470},
{88.59, 88.627576712807468, 988081, 2.530},
{88.63, 88.663252847120475, 963052, 2.590},
{88.66, 88.698928981433482, 938022, 2.660},
{88.70, 88.734605115746490, 912992, 2.740},
{88.73, 88.770281250059497, 887961, 2.810},
{88.77, 88.805957384372505, 862930, 2.900},
{88.81, 88.841633518685512, 837899, 2.980},
{88.84, 88.868390619420268, 812867, 2.300},
{88.87, 88.895147720155023, 794093, 2.360},
{88.90, 88.921904820889779, 775319, 2.420},
{88.92, 88.948661921624534, 756545, 2.480},
{88.95, 88.975419022359290, 737771, 2.540},
{88.98, 89.002176123094046, 718996, 2.610},
{89.00, 89.028933223828801, 700221, 2.680},
{89.03, 89.055690324563557, 681446, 2.750},
{89.06, 89.082447425298312, 662671, 2.830},
{89.08, 89.109204526033068, 643896, 2.910},
{89.11, 89.129272351584135, 625121, 2.250},
{89.13, 89.149340177135201, 611039, 2.300},
{89.15, 89.169408002686268, 596957, 2.350},
{89.17, 89.189475828237335, 582876, 2.410},
{89.19, 89.209543653788401, 568794, 2.470},
{89.21, 89.229611479339468, 554712, 2.530},
{89.23, 89.249679304890535, 540630, 2.600},
{89.25, 89.269747130441601, 526548, 2.670},
{89.27, 89.289814955992668, 512466, 2.740},
{89.29, 89.309882781543735, 498384, 2.820},
{89.31, 89.329950607094801, 484302, 2.900},
{89.33, 89.350018432645868, 470219, 2.990},
{89.35, 89.365069301809172, 456137, 2.310},
{89.37, 89.380120170972475, 445575, 2.370},
{89.38, 89.395171040135779, 435013, 2.420},
{89.40, 89.410221909299082, 424451, 2.480},
{89.41, 89.425272778462386, 413889, 2.550},
{89.43, 89.440323647625689, 403328, 2.610},
{89.44, 89.455374516788993, 392766, 2.680},
{89.46, 89.470425385952296, 382204, 2.760},
{89.47, 89.485476255115600, 371642, 2.840},
{89.49, 89.500527124278904, 361080, 2.920},
{89.50, 89.511815276151381, 350518, 2.260},
{89.51, 89.523103428023859, 342596, 2.310},
{89.52, 89.534391579896337, 334674, 2.360},
{89.53, 89.545679731768814, 326753, 2.420},
{89.55, 89.556967883641292, 318831, 2.480},
{89.56, 89.568256035513770, 310910, 2.540},
{89.57, 89.579544187386247, 302988, 2.610},
{89.58, 89.590832339258725, 295066, 2.680},
{89.59, 89.602120491131203, 287145, 2.750},
{89.60, 89.613408643003680, 279223, 2.830},
{89.61, 89.624696794876158, 271301, 2.910},
{89.62, 89.633162908780520, 263380, 2.250},
{89.63, 89.641629022684882, 257438, 2.300},
{89.64, 89.650095136589243, 251497, 2.360},
{89.65, 89.658561250493605, 245556, 2.410},
{89.66, 89.667027364397967, 239615, 2.470},
{89.67, 89.675493478302329, 233673, 2.540},
{89.68, 89.683959592206691, 227732, 2.600},
{89.68, 89.692425706111052, 221791, 2.670},
{89.69, 89.700891820015414, 215849, 2.750},
{89.70, 89.709357933919776, 209908, 2.830},
{89.71, 89.717824047824138, 203967, 2.910},
{89.72, 89.724173633252406, 198026, 2.250},
{89.72, 89.730523218680673, 193570, 2.300},
{89.73, 89.736872804108941, 189114, 2.350},
{89.74, 89.743222389537209, 184658, 2.410},
{89.74, 89.749571974965477, 180202, 2.470},
{89.75, 89.755921560393745, 175746, 2.530},
{89.76, 89.762271145822012, 171290, 2.600},
{89.76, 89.768620731250280, 166834, 2.670},
{89.77, 89.774970316678548, 162378, 2.740},
{89.77, 89.781319902106816, 157922, 2.820},
{89.78, 89.787669487535084, 153466, 2.900},
{89.79, 89.794019072963351, 149010, 2.990},
{89.79, 89.798781262034552, 144554, 2.310},
{89.80, 89.803543451105753, 141212, 2.360},
{89.80, 89.808305640176954, 137869, 2.420},
{89.81, 89.813067829248155, 134527, 2.480},
{89.81, 89.817830018319356, 131185, 2.540},
{89.82, 89.822592207390556, 127843, 2.610},
{89.82, 89.827354396461757, 124501, 2.680},
{89.83, 89.832116585532958, 121159, 2.750},
{89.83, 89.836878774604159, 117817, 2.830},
{89.84, 89.841640963675360, 114475, 2.910},
{89.84, 89.845212605478764, 111133, 2.250},
{89.85, 89.848784247282168, 108627, 2.300},
{89.85, 89.852355889085572, 106120, 2.360},
{89.85, 89.855927530888977, 103614, 2.410},
{89.86, 89.859499172692381, 101107, 2.470},
{89.86, 89.863070814495785, 98601, 2.540},
{89.86, 89.866642456299189, 96094, 2.600},
{89.87, 89.870214098102593, 93588, 2.670},
{89.87, 89.873785739905998, 91081, 2.750},
{89.87, 89.877357381709402, 88575, 2.830},
{89.88, 89.880929023512806, 86068, 2.910},
{89.88, 89.883607754865352, 83562, 2.240},
{89.88, 89.886286486217898, 81682, 2.300},
{89.89, 89.888965217570444, 79802, 2.350},
{89.89, 89.891643948922990, 77922, 2.410},
{89.89, 89.894322680275536, 76042, 2.470},
{89.89, 89.897001411628082, 74162, 2.530},
{89.90, 89.899680142980628, 72282, 2.600},
{89.90, 89.902358874333174, 70402, 2.660},
{89.90, 89.905037605685720, 68523, 2.740},
{89.91, 89.907716337038266, 66643, 2.820},
{89.91, 89.910395068390812, 64763, 2.900},
{89.91, 89.913073799743358, 62883, 2.980},
{89.91, 89.915082848257768, 61003, 2.310},
{89.92, 89.917091896772178, 59593, 2.360},
{89.92, 89.919100945286587, 58183, 2.420},
{89.92, 89.921109993800997, 56773, 2.480},
{89.92, 89.923119042315406, 55363, 2.540},
{89.92, 89.925128090829816, 53953, 2.610},
{89.93, 89.927137139344225, 52543, 2.680},
{89.93, 89.929146187858635, 51134, 2.750},
{89.93, 89.931155236373044, 49724, 2.830},
{89.93, 89.933164284887454, 48314, 2.910},
{89.93, 89.934671071273257, 46904, 2.250},
{89.93, 89.936177857659061, 45846, 2.300},
{89.94, 89.937684644044865, 44789, 2.360},
{89.94, 89.939191430430668, 43731, 2.410},
{89.94, 89.940698216816472, 42674, 2.470},
{89.94, 89.942205003202275, 41617, 2.540},
{89.94, 89.943711789588079, 40559, 2.600},
{89.94, 89.945218575973882, 39502, 2.670},
{89.95, 89.946725362359686, 38444, 2.740},
{89.95, 89.948232148745490, 37387, 2.820},
{89.95, 89.949738935131293, 36329, 2.900}
};
for(int r=0; r < tbl.length; r++)
{
double fromLat = tbl[r][FR_LAT];
double toLat = tbl[r][TO_LAT];
double atLat = atLatitude;
if(fromLat <= atLat && atLat < toLat)
{
double parallelLength = tbl[r][PA_LEN];
return (int)parallelLength;
}
}
return 0;
}
public static double calcZoom(int visible_distance, int img_width, double atLat)
{
// visible_distance -> in meters
// img_width -> in pixels
// atLat -> the latitude you want the zoom level
visible_distance = Math.abs(visible_distance);
double parallel_length = MainClass.getParallelLength(atLat); // in meters
// for an immage of 256 pixel pixel
double zoom256 = Math.log(parallel_length/visible_distance)/Math.log(2);
// adapt the zoom to the image size
int x = (int) (Math.log(img_width/256)/Math.log(2));
double zoom = zoom256 + x;
return zoom;
}
public static void main(String[] args)
{
int len;
double zoom;
// equator length
len = MainClass.getParallelLength(0);
System.out.println("parallel length at 0: " + String.valueOf(len));
// legth parallel at latitude 89.9 (near the north pole)
len = MainClass.getParallelLength(89.9);
System.out.println("parallel length at 89.9: " + String.valueOf(len));
// the zoom level needed to see 100km=100000m in a img having
// width 256 at equator latitude
zoom = MainClass.calcZoom(100000, 256, 0);
System.out.println("zoom (100km, width:256, lat:0): " + String.valueOf(zoom));
// the zoom level needed to see 100km=100000m in a img having
// width 512 at equator latitude
zoom = MainClass.calcZoom(100000, 512, 0);
System.out.println("zoom (100km, width:512, lat:0): " + String.valueOf(zoom));
// the zoom level needed to see 100km=100000m in a img having
// width 256 at latitude 60
zoom = MainClass.calcZoom(100000, 256, 60);
System.out.println("zoom (100km, width:256, lat:60): " + String.valueOf(zoom));
return;
}
}
Solution de travail finale:
public static void getZoomForMetersWide(GoogleMap googleMap, int mapViewWidth, LatLng latLngPoint, int desiredMeters) {
DisplayMetrics metrics = App.getAppCtx().getResources().getDisplayMetrics();
float mapWidth = mapViewWidth / metrics.density;
final int EQUATOR_LENGTH = 40075004;
final int TIME_ANIMATION_MILIS = 1500;
final double latitudinalAdjustment = Math.cos(Math.PI * latLngPoint.latitude / 180.0);
final double arg = EQUATOR_LENGTH * mapWidth * latitudinalAdjustment / (desiredMeters * 256.0);
double valToZoom = Math.log(arg) / Math.log(2.0);
googleMap.animateCamera(CameraUpdateFactory.newLatLngZoom(latLngPoint, Float.valueOf(String.valueOf(valToZoom))), TIME_ANIMATION_MILIS , null);
}
p.s. Utiliser @sho answer et @Lionel Briand commenter
Je suis sûr qu'il existe de nombreuses méthodes pour le trouver J'utilise cette technique pour calculer le niveau de zoom
mMap.setOnCameraChangeListener(new GoogleMap.OnCameraChangeListener() {
private float currentZoom = -1;
@Override
public void onCameraChange(CameraPosition position) {
if (position.zoom != currentZoom){
currentZoom = position.zoom; // here you get zoom level
Toast.makeText(this, "Zoom Value is : "+currentZoom, Toast.LENGTH_SHORT).show();
}
}
});