Comment puis-je calculer la somme cumulée par groupe en utilisant spécifiquement le DataFrame
abstraction
; et dans PySpark
?
Avec un exemple d'ensemble de données comme suit:
df = sqlContext.createDataFrame( [(1,2,"a"),(3,2,"a"),(1,3,"b"),(2,2,"a"),(2,3,"b")],
["time", "value", "class"] )
+----+-----+-----+
|time|value|class|
+----+-----+-----+
| 1| 2| a|
| 3| 2| a|
| 1| 3| b|
| 2| 2| a|
| 2| 3| b|
+----+-----+-----+
Je voudrais ajouter une colonne de somme cumulée de value
pour chaque class
regroupement sur la variable (ordonnée) time
.
Cela peut être fait en utilisant une combinaison d'une fonction de fenêtre et de la valeur Window.unboundedPreceding dans la plage de la fenêtre comme suit:
from pyspark.sql import Window
from pyspark.sql import functions as F
windowval = (Window.partitionBy('class').orderBy('time')
.rangeBetween(Window.unboundedPreceding, 0))
df_w_cumsum = df.withColumn('cum_sum', F.sum('value').over(windowval))
df_w_cumsum.show()
+----+-----+-----+-------+
|time|value|class|cum_sum|
+----+-----+-----+-------+
| 1| 3| b| 3|
| 2| 3| b| 6|
| 1| 2| a| 2|
| 2| 2| a| 4|
| 3| 2| a| 6|
+----+-----+-----+-------+