J'ai besoin d'un filtre passe-bas et passe-haut écrit en c #. J'ai des tableaux doubles pour ce processus de filtrage. Je pense que si j'essaie de convertir les algorithmes matlab Butterworth et Chebyshev en c #, ce serait plus facile. Mais je n'ai pas pu trouver le code des algorithmes butter.m et Chebyshev sur Internet et je ne veux pas configurer matlab et la boîte à outils de traitement du signal sur mon ordinateur. Pourriez-vous fournir ces codes s'il vous plaît? Merci..
http://www.musicdsp.org/archive.php?classid=3#38
J'ai implémenté le filtre en demi-code ci-dessus comme suit dans notre logiciel d'analyseur sEMG et cela fonctionne très bien.
public class FilterButterworth
{
/// <summary>
/// rez amount, from sqrt(2) to ~ 0.1
/// </summary>
private readonly float resonance;
private readonly float frequency;
private readonly int sampleRate;
private readonly PassType passType;
private readonly float c, a1, a2, a3, b1, b2;
/// <summary>
/// Array of input values, latest are in front
/// </summary>
private float[] inputHistory = new float[2];
/// <summary>
/// Array of output values, latest are in front
/// </summary>
private float[] outputHistory = new float[3];
public FilterButterworth(float frequency, int sampleRate, PassType passType, float resonance)
{
this.resonance = resonance;
this.frequency = frequency;
this.sampleRate = sampleRate;
this.passType = passType;
switch (passType)
{
case PassType.Lowpass:
c = 1.0f / (float)Math.Tan(Math.PI * frequency / sampleRate);
a1 = 1.0f / (1.0f + resonance * c + c * c);
a2 = 2f * a1;
a3 = a1;
b1 = 2.0f * (1.0f - c * c) * a1;
b2 = (1.0f - resonance * c + c * c) * a1;
break;
case PassType.Highpass:
c = (float)Math.Tan(Math.PI * frequency / sampleRate);
a1 = 1.0f / (1.0f + resonance * c + c * c);
a2 = -2f * a1;
a3 = a1;
b1 = 2.0f * (c * c - 1.0f) * a1;
b2 = (1.0f - resonance * c + c * c) * a1;
break;
}
}
public enum PassType
{
Highpass,
Lowpass,
}
public void Update(float newInput)
{
float newOutput = a1 * newInput + a2 * this.inputHistory[0] + a3 * this.inputHistory[1] - b1 * this.outputHistory[0] - b2 * this.outputHistory[1];
this.inputHistory[1] = this.inputHistory[0];
this.inputHistory[0] = newInput;
this.outputHistory[2] = this.outputHistory[1];
this.outputHistory[1] = this.outputHistory[0];
this.outputHistory[0] = newOutput;
}
public float Value
{
get { return this.outputHistory[0]; }
}
}
Notez que ce filtre a été créé à des fins audio DSP. Pour créer une sortie propre, vous devez régler la résonance sur sqrt(2)
.
J'ai trouvé cet outil en ligne qui semble prometteur: Conception de filtre numérique interactif: filtres Butterworth/Bessel/Chebyshev
Vous entrez simplement vos besoins:
Cliquez sur soumettre, et il calcule les informations suivantes:
Vous pouvez implémenter un filtre en C # directement à partir de la relation de récurrence.
Si vous n'avez besoin que de quelques filtres constants, vous avez terminé. Cependant, si vous devez être en mesure d'ajuster les paramètres du filtre au moment de l'exécution, vous devrez en faire plus. Heureusement, le professeur a fourni le code source de son outil , et il devrait être possible de le convertir en C #.
en voici un qui a beaucoup de modes, HP LP BP peak, et ainsi de suite, c'est un filtre statique BiQuad peut-être 2 pôles quelque chose de ce genre, c'est un filtre particulier et a un certain type de résultat numérique: https : //github.com/filoe/cscore/blob/master/CSCore/DSP/BiQuad.cs
/*
* These implementations are based on http://www.earlevel.com/main/2011/01/02/biquad-formulas/
*/
using System;
namespace CSCore.DSP
{
/// <summary>
/// Represents a biquad-filter.
/// </summary>
public abstract class BiQuad
{
/// <summary>
/// The a0 value.
/// </summary>
protected double A0;
/// <summary>
/// The a1 value.
/// </summary>
protected double A1;
/// <summary>
/// The a2 value.
/// </summary>
protected double A2;
/// <summary>
/// The b1 value.
/// </summary>
protected double B1;
/// <summary>
/// The b2 value.
/// </summary>
protected double B2;
/// <summary>
/// The q value.
/// </summary>
private double _q;
/// <summary>
/// The gain value in dB.
/// </summary>
private double _gainDB;
/// <summary>
/// The z1 value.
/// </summary>
protected double Z1;
/// <summary>
/// The z2 value.
/// </summary>
protected double Z2;
private double _frequency;
/// <summary>
/// Gets or sets the frequency.
/// </summary>
/// <exception cref="System.ArgumentOutOfRangeException">value;The samplerate has to be bigger than 2 * frequency.</exception>
public double Frequency
{
get { return _frequency; }
set
{
if (SampleRate < value * 2)
{
throw new ArgumentOutOfRangeException("value", "The samplerate has to be bigger than 2 * frequency.");
}
_frequency = value;
CalculateBiQuadCoefficients();
}
}
/// <summary>
/// Gets the sample rate.
/// </summary>
public int SampleRate { get; private set; }
/// <summary>
/// The q value.
/// </summary>
public double Q
{
get { return _q; }
set
{
if (value <= 0)
{
throw new ArgumentOutOfRangeException("value");
}
_q = value;
CalculateBiQuadCoefficients();
}
}
/// <summary>
/// Gets or sets the gain value in dB.
/// </summary>
public double GainDB
{
get { return _gainDB; }
set
{
_gainDB = value;
CalculateBiQuadCoefficients();
}
}
/// <summary>
/// Initializes a new instance of the <see cref="BiQuad"/> class.
/// </summary>
/// <param name="sampleRate">The sample rate.</param>
/// <param name="frequency">The frequency.</param>
/// <exception cref="System.ArgumentOutOfRangeException">
/// sampleRate
/// or
/// frequency
/// or
/// q
/// </exception>
protected BiQuad(int sampleRate, double frequency)
: this(sampleRate, frequency, 1.0 / Math.Sqrt(2))
{
}
/// <summary>
/// Initializes a new instance of the <see cref="BiQuad"/> class.
/// </summary>
/// <param name="sampleRate">The sample rate.</param>
/// <param name="frequency">The frequency.</param>
/// <param name="q">The q.</param>
/// <exception cref="System.ArgumentOutOfRangeException">
/// sampleRate
/// or
/// frequency
/// or
/// q
/// </exception>
protected BiQuad(int sampleRate, double frequency, double q)
{
if (sampleRate <= 0)
throw new ArgumentOutOfRangeException("sampleRate");
if (frequency <= 0)
throw new ArgumentOutOfRangeException("frequency");
if (q <= 0)
throw new ArgumentOutOfRangeException("q");
SampleRate = sampleRate;
Frequency = frequency;
Q = q;
GainDB = 6;
}
/// <summary>
/// Processes a single <paramref name="input"/> sample and returns the result.
/// </summary>
/// <param name="input">The input sample to process.</param>
/// <returns>The result of the processed <paramref name="input"/> sample.</returns>
public float Process(float input)
{
double o = input * A0 + Z1;
Z1 = input * A1 + Z2 - B1 * o;
Z2 = input * A2 - B2 * o;
return (float)o;
}
/// <summary>
/// Processes multiple <paramref name="input"/> samples.
/// </summary>
/// <param name="input">The input samples to process.</param>
/// <remarks>The result of the calculation gets stored within the <paramref name="input"/> array.</remarks>
public void Process(float[] input)
{
for (int i = 0; i < input.Length; i++)
{
input[i] = Process(input[i]);
}
}
/// <summary>
/// Calculates all coefficients.
/// </summary>
protected abstract void CalculateBiQuadCoefficients();
}
/// <summary>
/// Used to apply a lowpass-filter to a signal.
/// </summary>
public class LowpassFilter : BiQuad
{
/// <summary>
/// Initializes a new instance of the <see cref="LowpassFilter"/> class.
/// </summary>
/// <param name="sampleRate">The sample rate.</param>
/// <param name="frequency">The filter's corner frequency.</param>
public LowpassFilter(int sampleRate, double frequency)
: base(sampleRate, frequency)
{
}
/// <summary>
/// Calculates all coefficients.
/// </summary>
protected override void CalculateBiQuadCoefficients()
{
double k = Math.Tan(Math.PI * Frequency / SampleRate);
var norm = 1 / (1 + k / Q + k * k);
A0 = k * k * norm;
A1 = 2 * A0;
A2 = A0;
B1 = 2 * (k * k - 1) * norm;
B2 = (1 - k / Q + k * k) * norm;
}
}
/// <summary>
/// Used to apply a highpass-filter to a signal.
/// </summary>
public class HighpassFilter : BiQuad
{
private int p1;
private double p2;
/// <summary>
/// Initializes a new instance of the <see cref="HighpassFilter"/> class.
/// </summary>
/// <param name="sampleRate">The sample rate.</param>
/// <param name="frequency">The filter's corner frequency.</param>
public HighpassFilter(int sampleRate, double frequency)
: base(sampleRate, frequency)
{
}
/// <summary>
/// Calculates all coefficients.
/// </summary>
protected override void CalculateBiQuadCoefficients()
{
double k = Math.Tan(Math.PI * Frequency / SampleRate);
var norm = 1 / (1 + k / Q + k * k);
A0 = 1 * norm;
A1 = -2 * A0;
A2 = A0;
B1 = 2 * (k * k - 1) * norm;
B2 = (1 - k / Q + k * k) * norm;
}
}
/// <summary>
/// Used to apply a bandpass-filter to a signal.
/// </summary>
public class BandpassFilter : BiQuad
{
/// <summary>
/// Initializes a new instance of the <see cref="BandpassFilter"/> class.
/// </summary>
/// <param name="sampleRate">The sample rate.</param>
/// <param name="frequency">The filter's corner frequency.</param>
public BandpassFilter(int sampleRate, double frequency)
: base(sampleRate, frequency)
{
}
/// <summary>
/// Calculates all coefficients.
/// </summary>
protected override void CalculateBiQuadCoefficients()
{
double k = Math.Tan(Math.PI * Frequency / SampleRate);
double norm = 1 / (1 + k / Q + k * k);
A0 = k / Q * norm;
A1 = 0;
A2 = -A0;
B1 = 2 * (k * k - 1) * norm;
B2 = (1 - k / Q + k * k) * norm;
}
}
/// <summary>
/// Used to apply a notch-filter to a signal.
/// </summary>
public class NotchFilter : BiQuad
{
/// <summary>
/// Initializes a new instance of the <see cref="NotchFilter"/> class.
/// </summary>
/// <param name="sampleRate">The sample rate.</param>
/// <param name="frequency">The filter's corner frequency.</param>
public NotchFilter(int sampleRate, double frequency)
: base(sampleRate, frequency)
{
}
/// <summary>
/// Calculates all coefficients.
/// </summary>
protected override void CalculateBiQuadCoefficients()
{
double k = Math.Tan(Math.PI * Frequency / SampleRate);
double norm = 1 / (1 + k / Q + k * k);
A0 = (1 + k * k) * norm;
A1 = 2 * (k * k - 1) * norm;
A2 = A0;
B1 = A1;
B2 = (1 - k / Q + k * k) * norm;
}
}
/// <summary>
/// Used to apply a lowshelf-filter to a signal.
/// </summary>
public class LowShelfFilter : BiQuad
{
/// <summary>
/// Initializes a new instance of the <see cref="LowShelfFilter"/> class.
/// </summary>
/// <param name="sampleRate">The sample rate.</param>
/// <param name="frequency">The filter's corner frequency.</param>
/// <param name="gainDB">Gain value in dB.</param>
public LowShelfFilter(int sampleRate, double frequency, double gainDB)
: base(sampleRate, frequency)
{
GainDB = gainDB;
}
/// <summary>
/// Calculates all coefficients.
/// </summary>
protected override void CalculateBiQuadCoefficients()
{
const double sqrt2 = 1.4142135623730951;
double k = Math.Tan(Math.PI * Frequency / SampleRate);
double v = Math.Pow(10, Math.Abs(GainDB) / 20.0);
double norm;
if (GainDB >= 0)
{ // boost
norm = 1 / (1 + sqrt2 * k + k * k);
A0 = (1 + Math.Sqrt(2 * v) * k + v * k * k) * norm;
A1 = 2 * (v * k * k - 1) * norm;
A2 = (1 - Math.Sqrt(2 * v) * k + v * k * k) * norm;
B1 = 2 * (k * k - 1) * norm;
B2 = (1 - sqrt2 * k + k * k) * norm;
}
else
{ // cut
norm = 1 / (1 + Math.Sqrt(2 * v) * k + v * k * k);
A0 = (1 + sqrt2 * k + k * k) * norm;
A1 = 2 * (k * k - 1) * norm;
A2 = (1 - sqrt2 * k + k * k) * norm;
B1 = 2 * (v * k * k - 1) * norm;
B2 = (1 - Math.Sqrt(2 * v) * k + v * k * k) * norm;
}
}
}
/// <summary>
/// Used to apply a highshelf-filter to a signal.
/// </summary>
public class HighShelfFilter : BiQuad
{
/// <summary>
/// Initializes a new instance of the <see cref="HighShelfFilter"/> class.
/// </summary>
/// <param name="sampleRate">The sample rate.</param>
/// <param name="frequency">The filter's corner frequency.</param>
/// <param name="gainDB">Gain value in dB.</param>
public HighShelfFilter(int sampleRate, double frequency, double gainDB)
: base(sampleRate, frequency)
{
GainDB = gainDB;
}
/// <summary>
/// Calculates all coefficients.
/// </summary>
protected override void CalculateBiQuadCoefficients()
{
const double sqrt2 = 1.4142135623730951;
double k = Math.Tan(Math.PI * Frequency / SampleRate);
double v = Math.Pow(10, Math.Abs(GainDB) / 20.0);
double norm;
if (GainDB >= 0)
{ // boost
norm = 1 / (1 + sqrt2 * k + k * k);
A0 = (v + Math.Sqrt(2 * v) * k + k * k) * norm;
A1 = 2 * (k * k - v) * norm;
A2 = (v - Math.Sqrt(2 * v) * k + k * k) * norm;
B1 = 2 * (k * k - 1) * norm;
B2 = (1 - sqrt2 * k + k * k) * norm;
}
else
{ // cut
norm = 1 / (v + Math.Sqrt(2 * v) * k + k * k);
A0 = (1 + sqrt2 * k + k * k) * norm;
A1 = 2 * (k * k - 1) * norm;
A2 = (1 - sqrt2 * k + k * k) * norm;
B1 = 2 * (k * k - v) * norm;
B2 = (v - Math.Sqrt(2 * v) * k + k * k) * norm;
}
}
}
/// <summary>
/// Used to apply an peak-filter to a signal.
/// </summary>
public class PeakFilter : BiQuad
{
/// <summary>
/// Gets or sets the bandwidth.
/// </summary>
public double BandWidth
{
get { return Q; }
set
{
if (value <= 0)
throw new ArgumentOutOfRangeException("value");
Q = value;
}
}
/// <summary>
/// Initializes a new instance of the <see cref="PeakFilter"/> class.
/// </summary>
/// <param name="sampleRate">The sampleRate of the audio data to process.</param>
/// <param name="frequency">The center frequency to adjust.</param>
/// <param name="bandWidth">The bandWidth.</param>
/// <param name="peakGainDB">The gain value in dB.</param>
public PeakFilter(int sampleRate, double frequency, double bandWidth, double peakGainDB)
: base(sampleRate, frequency, bandWidth)
{
GainDB = peakGainDB;
}
/// <summary>
/// Calculates all coefficients.
/// </summary>
protected override void CalculateBiQuadCoefficients()
{
double norm;
double v = Math.Pow(10, Math.Abs(GainDB) / 20.0);
double k = Math.Tan(Math.PI * Frequency / SampleRate);
double q = Q;
if (GainDB >= 0) //boost
{
norm = 1 / (1 + 1 / q * k + k * k);
A0 = (1 + v / q * k + k * k) * norm;
A1 = 2 * (k * k - 1) * norm;
A2 = (1 - v / q * k + k * k) * norm;
B1 = A1;
B2 = (1 - 1 / q * k + k * k) * norm;
}
else //cut
{
norm = 1 / (1 + v / q * k + k * k);
A0 = (1 + 1 / q * k + k * k) * norm;
A1 = 2 * (k * k - 1) * norm;
A2 = (1 - 1 / q * k + k * k) * norm;
B1 = A1;
B2 = (1 - v / q * k + k * k) * norm;
}
}
}
}
Vous pouvez jeter un œil au code source du filtre passe-bas Butterworth ici sur une autre question de stackoverflow. Comme d'autres le soulignent, EmguCV est livré avec de nombreux filtres codés efficacement et disponibles dès la sortie de la boîte
Voici quelques exemples de code c # d'un filtre butterworth et chebyshev utilisant fft de NMath.