Lors de la génération de graphiques et de l'affichage de différents ensembles de données, il est généralement préférable de différencier les ensembles par couleur. Donc une ligne est rouge et la suivante est verte et ainsi de suite. Le problème est alors que lorsque le nombre de jeux de données est inconnu, il faut générer aléatoirement ces couleurs et souvent elles se retrouvent très proches les unes des autres (vert, vert clair par exemple).
Avez-vous des idées sur la façon dont cela pourrait être résolu et comment il serait possible de générer des couleurs distinctement différentes?
Je serais formidable si des exemples (n'hésitez pas à discuter du problème et de la solution sans exemples si vous trouvez cela plus facile) étaient en couleurs basées sur C # et RVB.
Vous avez trois canaux de couleur 0 à 255 R, G et B.
Tout d'abord
0, 0, 255
0, 255, 0
255, 0, 0
Ensuite, passez par
0, 255, 255
255, 0, 255
255, 255, 0
Divisez ensuite par 2 => 128 et recommencez:
0, 0, 128
0, 128, 0
128, 0, 0
0, 128, 128
128, 0, 128
128, 128, 0
Diviser par 2 => 64
La prochaine fois, ajoutez 64 à 128 => 192
suivre le modèle.
Facile à programmer et vous donne des couleurs assez distinctes.
EDIT: demande d'échantillon de code
Aussi - en ajoutant le motif supplémentaire ci-dessous si le gris est une couleur acceptable:
255, 255, 255
128, 128, 128
Il existe plusieurs façons de gérer leur génération dans le code.
Si vous pouvez garantir que vous n'aurez jamais besoin de plus d'un nombre fixe de couleurs, générez simplement un tableau de couleurs suivant ce modèle et utilisez-les:
static string[] ColourValues = new string[] {
"FF0000", "00FF00", "0000FF", "FFFF00", "FF00FF", "00FFFF", "000000",
"800000", "008000", "000080", "808000", "800080", "008080", "808080",
"C00000", "00C000", "0000C0", "C0C000", "C000C0", "00C0C0", "C0C0C0",
"400000", "004000", "000040", "404000", "400040", "004040", "404040",
"200000", "002000", "000020", "202000", "200020", "002020", "202020",
"600000", "006000", "000060", "606000", "600060", "006060", "606060",
"A00000", "00A000", "0000A0", "A0A000", "A000A0", "00A0A0", "A0A0A0",
"E00000", "00E000", "0000E0", "E0E000", "E000E0", "00E0E0", "E0E0E0",
};
Si vous ne savez pas combien de couleurs vous allez avoir besoin, le code ci-dessous générera jusqu'à 896 couleurs en utilisant ce motif. (896 = 256 * 7/2) 256 est l'espace colorimétrique par canal, nous avons 7 motifs et nous nous arrêtons avant d'arriver aux couleurs séparées par une seule valeur de couleur.
J'ai probablement travaillé plus dur sur ce code que je n'en avais besoin. Tout d'abord, il existe un générateur d'intensité qui commence à 255, puis génère les valeurs selon le modèle décrit ci-dessus. Le générateur de motifs parcourt simplement les sept motifs de couleurs.
using System;
class Program {
static void Main(string[] args) {
ColourGenerator generator = new ColourGenerator();
for (int i = 0; i < 896; i++) {
Console.WriteLine(string.Format("{0}: {1}", i, generator.NextColour()));
}
}
}
public class ColourGenerator {
private int index = 0;
private IntensityGenerator intensityGenerator = new IntensityGenerator();
public string NextColour() {
string colour = string.Format(PatternGenerator.NextPattern(index),
intensityGenerator.NextIntensity(index));
index++;
return colour;
}
}
public class PatternGenerator {
public static string NextPattern(int index) {
switch (index % 7) {
case 0: return "{0}0000";
case 1: return "00{0}00";
case 2: return "0000{0}";
case 3: return "{0}{0}00";
case 4: return "{0}00{0}";
case 5: return "00{0}{0}";
case 6: return "{0}{0}{0}";
default: throw new Exception("Math error");
}
}
}
public class IntensityGenerator {
private IntensityValueWalker walker;
private int current;
public string NextIntensity(int index) {
if (index == 0) {
current = 255;
}
else if (index % 7 == 0) {
if (walker == null) {
walker = new IntensityValueWalker();
}
else {
walker.MoveNext();
}
current = walker.Current.Value;
}
string currentText = current.ToString("X");
if (currentText.Length == 1) currentText = "0" + currentText;
return currentText;
}
}
public class IntensityValue {
private IntensityValue mChildA;
private IntensityValue mChildB;
public IntensityValue(IntensityValue parent, int value, int level) {
if (level > 7) throw new Exception("There are no more colours left");
Value = value;
Parent = parent;
Level = level;
}
public int Level { get; set; }
public int Value { get; set; }
public IntensityValue Parent { get; set; }
public IntensityValue ChildA {
get {
return mChildA ?? (mChildA = new IntensityValue(this, this.Value - (1<<(7-Level)), Level+1));
}
}
public IntensityValue ChildB {
get {
return mChildB ?? (mChildB = new IntensityValue(this, Value + (1<<(7-Level)), Level+1));
}
}
}
public class IntensityValueWalker {
public IntensityValueWalker() {
Current = new IntensityValue(null, 1<<7, 1);
}
public IntensityValue Current { get; set; }
public void MoveNext() {
if (Current.Parent == null) {
Current = Current.ChildA;
}
else if (Current.Parent.ChildA == Current) {
Current = Current.Parent.ChildB;
}
else {
int levelsUp = 1;
Current = Current.Parent;
while (Current.Parent != null && Current == Current.Parent.ChildB) {
Current = Current.Parent;
levelsUp++;
}
if (Current.Parent != null) {
Current = Current.Parent.ChildB;
}
else {
levelsUp++;
}
for (int i = 0; i < levelsUp; i++) {
Current = Current.ChildA;
}
}
}
}
Pour implémenter une liste de variantes où vont vos couleurs, 255 puis utilisez toutes les possibilités de cela, puis ajoutez 0 et tous les motifs RVB avec ces deux valeurs. Ajoutez ensuite 128 et toutes les combinaisons RVB avec celles-ci. Puis 64. Puis 192. Etc.
En Java,
public Color getColor(int i) {
return new Color(getRGB(i));
}
public int getRGB(int index) {
int[] p = getPattern(index);
return getElement(p[0]) << 16 | getElement(p[1]) << 8 | getElement(p[2]);
}
public int getElement(int index) {
int value = index - 1;
int v = 0;
for (int i = 0; i < 8; i++) {
v = v | (value & 1);
v <<= 1;
value >>= 1;
}
v >>= 1;
return v & 0xFF;
}
public int[] getPattern(int index) {
int n = (int)Math.cbrt(index);
index -= (n*n*n);
int[] p = new int[3];
Arrays.fill(p,n);
if (index == 0) {
return p;
}
index--;
int v = index % 3;
index = index / 3;
if (index < n) {
p[v] = index % n;
return p;
}
index -= n;
p[v ] = index / n;
p[++v % 3] = index % n;
return p;
}
Cela produira des modèles de ce type à l'infini (2 ^ 24) dans le futur. Cependant, après une centaine de taches, vous ne verrez probablement pas beaucoup de différence entre une couleur avec 0 ou 32 à la place du bleu.
Vous feriez mieux de normaliser cela dans un espace colorimétrique différent. Espace colorimétrique LAB par exemple avec les valeurs L, A, B normalisées et converties. Ainsi, la distinction de la couleur est poussée à travers quelque chose de plus proche de l'œil humain.
getElement () inverse l'endian d'un nombre de 8 bits et commence à compter de -1 au lieu de 0 (masquage avec 255). Il va donc 255,0,127,192,64, ... à mesure que le nombre augmente, il déplace de moins en moins de bits significatifs, subdivisant le nombre.
getPattern () détermine quel doit être l'élément le plus significatif du modèle (c'est la racine du cube). Procède ensuite à décomposer les 3N² + 3N + 1 motifs différents qui impliquent cet élément le plus significatif.
Cet algorithme produira (les 128 premières valeurs):
#FFFFFF
#000000
#FF0000
#00FF00
#0000FF
#FFFF00
#00FFFF
#FF00FF
#808080
#FF8080
#80FF80
#8080FF
#008080
#800080
#808000
#FFFF80
#80FFFF
#FF80FF
#FF0080
#80FF00
#0080FF
#00FF80
#8000FF
#FF8000
#000080
#800000
#008000
#404040
#FF4040
#40FF40
#4040FF
#004040
#400040
#404000
#804040
#408040
#404080
#FFFF40
#40FFFF
#FF40FF
#FF0040
#40FF00
#0040FF
#FF8040
#40FF80
#8040FF
#00FF40
#4000FF
#FF4000
#000040
#400000
#004000
#008040
#400080
#804000
#80FF40
#4080FF
#FF4080
#800040
#408000
#004080
#808040
#408080
#804080
#C0C0C0
#FFC0C0
#C0FFC0
#C0C0FF
#00C0C0
#C000C0
#C0C000
#80C0C0
#C080C0
#C0C080
#40C0C0
#C040C0
#C0C040
#FFFFC0
#C0FFFF
#FFC0FF
#FF00C0
#C0FF00
#00C0FF
#FF80C0
#C0FF80
#80C0FF
#FF40C0
#C0FF40
#40C0FF
#00FFC0
#C000FF
#FFC000
#0000C0
#C00000
#00C000
#0080C0
#C00080
#80C000
#0040C0
#C00040
#40C000
#80FFC0
#C080FF
#FFC080
#8000C0
#C08000
#00C080
#8080C0
#C08080
#80C080
#8040C0
#C08040
#40C080
#40FFC0
#C040FF
#FFC040
#4000C0
#C04000
#00C040
#4080C0
#C04080
#80C040
#4040C0
#C04040
#40C040
#202020
#FF2020
#20FF20
Lisez de gauche à droite, de haut en bas. 729 couleurs (9³). Donc, tous les modèles jusqu'à n = 9. Vous remarquerez la vitesse à laquelle ils commencent à s'affronter. Il n'y a que tant de variations WRGBCYMK. Et cette solution, bien qu'intelligente, ne fait essentiellement que différentes nuances de couleurs primaires.
Une grande partie des affrontements est due au vert et à la ressemblance de la plupart des verts avec la plupart des gens. La demande que chacun soit au maximum différent au départ plutôt que juste assez différent pour ne pas être de la même couleur. Et des défauts de base dans l'idée résultant en des motifs de couleurs primaires et des teintes identiques.
En utilisant CIELab2000 Color Space and Distance Routine pour sélectionner au hasard et essayer 10 000 couleurs différentes et trouver la distance minimale la plus éloignée des couleurs précédentes, (à peu près la définition de la demande) évite les conflits plus longs que la solution ci-dessus:
Ce qui pourrait juste être appelé une liste statique pour Easy Way. Il a fallu une heure et demie pour générer 729 entrées:
#9BC4E5
#310106
#04640D
#FEFB0A
#FB5514
#E115C0
#00587F
#0BC582
#FEB8C8
#9E8317
#01190F
#847D81
#58018B
#B70639
#703B01
#F7F1DF
#118B8A
#4AFEFA
#FCB164
#796EE6
#000D2C
#53495F
#F95475
#61FC03
#5D9608
#DE98FD
#98A088
#4F584E
#248AD0
#5C5300
#9F6551
#BCFEC6
#932C70
#2B1B04
#B5AFC4
#D4C67A
#AE7AA1
#C2A393
#0232FD
#6A3A35
#BA6801
#168E5C
#16C0D0
#C62100
#014347
#233809
#42083B
#82785D
#023087
#B7DAD2
#196956
#8C41BB
#ECEDFE
#2B2D32
#94C661
#F8907D
#895E6B
#788E95
#FB6AB8
#576094
#DB1474
#8489AE
#860E04
#FBC206
#6EAB9B
#F2CDFE
#645341
#760035
#647A41
#496E76
#E3F894
#F9D7CD
#876128
#A1A711
#01FB92
#FD0F31
#BE8485
#C660FB
#120104
#D48958
#05AEE8
#C3C1BE
#9F98F8
#1167D9
#D19012
#B7D802
#826392
#5E7A6A
#B29869
#1D0051
#8BE7FC
#76E0C1
#BACFA7
#11BA09
#462C36
#65407D
#491803
#F5D2A8
#03422C
#72A46E
#128EAC
#47545E
#B95C69
#A14D12
#C4C8FA
#372A55
#3F3610
#D3A2C6
#719FFA
#0D841A
#4C5B32
#9DB3B7
#B14F8F
#747103
#9F816D
#D26A5B
#8B934B
#F98500
#002935
#D7F3FE
#FCB899
#1C0720
#6B5F61
#F98A9D
#9B72C2
#A6919D
#2C3729
#D7C70B
#9F9992
#EFFBD0
#FDE2F1
#923A52
#5140A7
#BC14FD
#6D706C
#0007C4
#C6A62F
#000C14
#904431
#600013
#1C1B08
#693955
#5E7C99
#6C6E82
#D0AFB3
#493B36
#AC93CE
#C4BA9C
#09C4B8
#69A5B8
#374869
#F868ED
#E70850
#C04841
#C36333
#700366
#8A7A93
#52351D
#B503A2
#D17190
#A0F086
#7B41FC
#0EA64F
#017499
#08A882
#7300CD
#A9B074
#4E6301
#AB7E41
#547FF4
#134DAC
#FDEC87
#056164
#FE12A0
#C264BA
#939DAD
#0BCDFA
#277442
#1BDE4A
#826958
#977678
#BAFCE8
#7D8475
#8CCF95
#726638
#FEA8EB
#EAFEF0
#6B9279
#C2FE4B
#304041
#1EA6A7
#022403
#062A47
#054B17
#F4C673
#02FEC7
#9DBAA8
#775551
#835536
#565BCC
#80D7D2
#7AD607
#696F54
#87089A
#664B19
#242235
#7DB00D
#BFC7D6
#D5A97E
#433F31
#311A18
#FDB2AB
#D586C9
#7A5FB1
#32544A
#EFE3AF
#859D96
#2B8570
#8B282D
#E16A07
#4B0125
#021083
#114558
#F707F9
#C78571
#7FB9BC
#FC7F4B
#8D4A92
#6B3119
#884F74
#994E4F
#9DA9D3
#867B40
#CED5C4
#1CA2FE
#D9C5B4
#FEAA00
#507B01
#A7D0DB
#53858D
#588F4A
#FBEEEC
#FC93C1
#D7CCD4
#3E4A02
#C8B1E2
#7A8B62
#9A5AE2
#896C04
#B1121C
#402D7D
#858701
#D498A6
#B484EF
#5C474C
#067881
#C0F9FC
#726075
#8D3101
#6C93B2
#A26B3F
#AA6582
#4F4C4F
#5A563D
#E83005
#32492D
#FC7272
#B9C457
#552A5B
#B50464
#616E79
#DCE2E4
#CF8028
#0AE2F0
#4F1E24
#FD5E46
#4B694E
#C5DEFC
#5DC262
#022D26
#7776B8
#FD9F66
#B049B8
#988F73
#BE385A
#2B2126
#54805A
#141B55
#67C09B
#456989
#DDC1D9
#166175
#C1E29C
#A397B5
#2E2922
#ABDBBE
#B4A6A8
#A06B07
#A99949
#0A0618
#B14E2E
#60557D
#D4A556
#82A752
#4A005B
#3C404F
#6E6657
#7E8BD5
#1275B8
#D79E92
#230735
#661849
#7A8391
#FE0F7B
#B0B6A9
#629591
#D05591
#97B68A
#97939A
#035E38
#53E19E
#DFD7F9
#02436C
#525A72
#059A0E
#3E736C
#AC8E87
#D10C92
#B9906E
#66BDFD
#C0ABFD
#0734BC
#341224
#8AAAC1
#0E0B03
#414522
#6A2F3E
#2D9A8A
#4568FD
#FDE6D2
#FEE007
#9A003C
#AC8190
#DCDD58
#B7903D
#1F2927
#9B02E6
#827A71
#878B8A
#8F724F
#AC4B70
#37233B
#385559
#F347C7
#9DB4FE
#D57179
#DE505A
#37F7DD
#503500
#1C2401
#DD0323
#00A4BA
#955602
#FA5B94
#AA766C
#B8E067
#6A807E
#4D2E27
#73BED7
#D7BC8A
#614539
#526861
#716D96
#829A17
#210109
#436C2D
#784955
#987BAB
#8F0152
#0452FA
#B67757
#A1659F
#D4F8D8
#48416F
#DEBAAF
#A5A9AA
#8C6B83
#403740
#70872B
#D9744D
#151E2C
#5C5E5E
#B47C02
#F4CBD0
#E49D7D
#DD9954
#B0A18B
#2B5308
#EDFD64
#9D72FC
#2A3351
#68496C
#C94801
#EED05E
#826F6D
#E0D6BB
#5B6DB4
#662F98
#0C97CA
#C1CA89
#755A03
#DFA619
#CD70A8
#BBC9C7
#F6BCE3
#A16462
#01D0AA
#87C6B3
#E7B2FA
#D85379
#643AD5
#D18AAE
#13FD5E
#B3E3FD
#C977DB
#C1A7BB
#9286CB
#A19B6A
#8FFED7
#6B1F17
#DF503A
#10DDD7
#9A8457
#60672F
#7D327D
#DD8782
#59AC42
#82FDB8
#FC8AE7
#909F6F
#B691AE
#B811CD
#BCB24E
#CB4BD9
#2B2304
#AA9501
#5D5096
#403221
#F9FAB4
#3990FC
#70DE7F
#95857F
#84A385
#50996F
#797B53
#7B6142
#81D5FE
#9CC428
#0B0438
#3E2005
#4B7C91
#523854
#005EA9
#F0C7AD
#ACB799
#FAC08E
#502239
#BFAB6A
#2B3C48
#0EB5D8
#8A5647
#49AF74
#067AE9
#F19509
#554628
#4426A4
#7352C9
#3F4287
#8B655E
#B480BF
#9BA74C
#5F514C
#CC9BDC
#BA7942
#1C4138
#3C3C3A
#29B09C
#02923F
#701D2B
#36577C
#3F00EA
#3D959E
#440601
#8AEFF3
#6D442A
#BEB1A8
#A11C02
#8383FE
#A73839
#DBDE8A
#0283B3
#888597
#32592E
#F5FDFA
#01191B
#AC707A
#B6BD03
#027B59
#7B4F08
#957737
#83727D
#035543
#6F7E64
#C39999
#52847A
#925AAC
#77CEDA
#516369
#E0D7D0
#FCDD97
#555424
#96E6B6
#85BB74
#5E2074
#BD5E48
#9BEE53
#1A351E
#3148CD
#71575F
#69A6D0
#391A62
#E79EA0
#1C0F03
#1B1636
#D20C39
#765396
#7402FE
#447F3E
#CFD0A8
#3A2600
#685AFC
#A4B3C6
#534302
#9AA097
#FD5154
#9B0085
#403956
#80A1A7
#6E7A9A
#605E6A
#86F0E2
#5A2B01
#7E3D43
#ED823B
#32331B
#424837
#40755E
#524F48
#B75807
#B40080
#5B8CA1
#FDCFE5
#CCFEAC
#755847
#CAB296
#C0D6E3
#2D7100
#D5E4DE
#362823
#69C63C
#AC3801
#163132
#4750A6
#61B8B2
#FCC4B5
#DEBA2E
#FE0449
#737930
#8470AB
#687D87
#D7B760
#6AAB86
#8398B8
#B7B6BF
#92C4A1
#B6084F
#853B5E
#D0BCBA
#92826D
#C6DDC6
#BE5F5A
#280021
#435743
#874514
#63675A
#E97963
#8F9C9E
#985262
#909081
#023508
#DDADBF
#D78493
#363900
#5B0120
#603C47
#C3955D
#AC61CB
#FD7BA7
#716C74
#8D895B
#071001
#82B4F2
#B6BBD8
#71887A
#8B9FE3
#997158
#65A6AB
#2E3067
#321301
#FEECCB
#3B5E72
#C8FE85
#A1DCDF
#CB49A6
#B1C5E4
#3E5EB0
#88AEA7
#04504C
#975232
#6786B9
#068797
#9A98C4
#A1C3C2
#1C3967
#DBEA07
#789658
#E7E7C6
#A6C886
#957F89
#752E62
#171518
#A75648
#01D26F
#0F535D
#047E76
#C54754
#5D6E88
#AB9483
#803B99
#FA9C48
#4A8A22
#654A5C
#965F86
#9D0CBB
#A0E8A0
#D3DBFA
#FD908F
#AEAB85
#A13B89
#F1B350
#066898
#948A42
#C8BEDE
#19252C
#7046AA
#E1EEFC
#3E6557
#CD3F26
#2B1925
#DDAD94
#C0B109
#37DFFE
#039676
#907468
#9E86A5
#3A1B49
#BEE5B7
#C29501
#9E3645
#DC580A
#645631
#444B4B
#FD1A63
#DDE5AE
#887800
#36006F
#3A6260
#784637
#FEA0B7
#A3E0D2
#6D6316
#5F7172
#B99EC7
#777A7E
#E0FEFD
#E16DC5
#01344B
#F8F8FC
#9F9FB5
#182617
#FE3D21
#7D0017
#822F21
#EFD9DC
#6E68C4
#35473E
#007523
#767667
#A6825D
#83DC5F
#227285
#A95E34
#526172
#979730
#756F6D
#716259
#E8B2B5
#B6C9BB
#9078DA
#4F326E
#B2387B
#888C6F
#314B5F
#E5B678
#38A3C6
#586148
#5C515B
#CDCCE1
#C8977F
L'utilisation de la force brute pour (tester toutes les 16 777 216 couleurs RVB via CIELab Delta2000/à partir du noir) produit une série. Ce qui commence à se heurter vers 26 mais pourrait atteindre 30 ou 40 avec une inspection visuelle et une suppression manuelle (ce qui ne peut pas être fait avec un ordinateur). Donc, faire le maximum absolu ne peut faire que quelques dizaines de couleurs distinctes par programme. Une liste discrète est votre meilleur pari. Vous obtiendrez des couleurs plus discrètes avec une liste que vous ne le feriez par programme. Le moyen le plus simple est la meilleure solution, commencez à mélanger et à faire correspondre d'autres façons de modifier vos données que la couleur.
#000000
#00FF00
#0000FF
#FF0000
#01FFFE
#FFA6FE
#FFDB66
#006401
#010067
#95003A
#007DB5
#FF00F6
#FFEEE8
#774D00
#90FB92
#0076FF
#D5FF00
#FF937E
#6A826C
#FF029D
#FE8900
#7A4782
#7E2DD2
#85A900
#FF0056
#A42400
#00AE7E
#683D3B
#BDC6FF
#263400
#BDD393
#00B917
#9E008E
#001544
#C28C9F
#FF74A3
#01D0FF
#004754
#E56FFE
#788231
#0E4CA1
#91D0CB
#BE9970
#968AE8
#BB8800
#43002C
#DEFF74
#00FFC6
#FFE502
#620E00
#008F9C
#98FF52
#7544B1
#B500FF
#00FF78
#FF6E41
#005F39
#6B6882
#5FAD4E
#A75740
#A5FFD2
#FFB167
#009BFF
#E85EBE
Mise à jour: j'ai continué cela pendant environ un mois donc, à 1024 force brute.
public static final String[] indexcolors = new String[]{
"#000000", "#FFFF00", "#1CE6FF", "#FF34FF", "#FF4A46", "#008941", "#006FA6", "#A30059",
"#FFDBE5", "#7A4900", "#0000A6", "#63FFAC", "#B79762", "#004D43", "#8FB0FF", "#997D87",
"#5A0007", "#809693", "#FEFFE6", "#1B4400", "#4FC601", "#3B5DFF", "#4A3B53", "#FF2F80",
"#61615A", "#BA0900", "#6B7900", "#00C2A0", "#FFAA92", "#FF90C9", "#B903AA", "#D16100",
"#DDEFFF", "#000035", "#7B4F4B", "#A1C299", "#300018", "#0AA6D8", "#013349", "#00846F",
"#372101", "#FFB500", "#C2FFED", "#A079BF", "#CC0744", "#C0B9B2", "#C2FF99", "#001E09",
"#00489C", "#6F0062", "#0CBD66", "#EEC3FF", "#456D75", "#B77B68", "#7A87A1", "#788D66",
"#885578", "#FAD09F", "#FF8A9A", "#D157A0", "#BEC459", "#456648", "#0086ED", "#886F4C",
"#34362D", "#B4A8BD", "#00A6AA", "#452C2C", "#636375", "#A3C8C9", "#FF913F", "#938A81",
"#575329", "#00FECF", "#B05B6F", "#8CD0FF", "#3B9700", "#04F757", "#C8A1A1", "#1E6E00",
"#7900D7", "#A77500", "#6367A9", "#A05837", "#6B002C", "#772600", "#D790FF", "#9B9700",
"#549E79", "#FFF69F", "#201625", "#72418F", "#BC23FF", "#99ADC0", "#3A2465", "#922329",
"#5B4534", "#FDE8DC", "#404E55", "#0089A3", "#CB7E98", "#A4E804", "#324E72", "#6A3A4C",
"#83AB58", "#001C1E", "#D1F7CE", "#004B28", "#C8D0F6", "#A3A489", "#806C66", "#222800",
"#BF5650", "#E83000", "#66796D", "#DA007C", "#FF1A59", "#8ADBB4", "#1E0200", "#5B4E51",
"#C895C5", "#320033", "#FF6832", "#66E1D3", "#CFCDAC", "#D0AC94", "#7ED379", "#012C58",
"#7A7BFF", "#D68E01", "#353339", "#78AFA1", "#FEB2C6", "#75797C", "#837393", "#943A4D",
"#B5F4FF", "#D2DCD5", "#9556BD", "#6A714A", "#001325", "#02525F", "#0AA3F7", "#E98176",
"#DBD5DD", "#5EBCD1", "#3D4F44", "#7E6405", "#02684E", "#962B75", "#8D8546", "#9695C5",
"#E773CE", "#D86A78", "#3E89BE", "#CA834E", "#518A87", "#5B113C", "#55813B", "#E704C4",
"#00005F", "#A97399", "#4B8160", "#59738A", "#FF5DA7", "#F7C9BF", "#643127", "#513A01",
"#6B94AA", "#51A058", "#A45B02", "#1D1702", "#E20027", "#E7AB63", "#4C6001", "#9C6966",
"#64547B", "#97979E", "#006A66", "#391406", "#F4D749", "#0045D2", "#006C31", "#DDB6D0",
"#7C6571", "#9FB2A4", "#00D891", "#15A08A", "#BC65E9", "#FFFFFE", "#C6DC99", "#203B3C",
"#671190", "#6B3A64", "#F5E1FF", "#FFA0F2", "#CCAA35", "#374527", "#8BB400", "#797868",
"#C6005A", "#3B000A", "#C86240", "#29607C", "#402334", "#7D5A44", "#CCB87C", "#B88183",
"#AA5199", "#B5D6C3", "#A38469", "#9F94F0", "#A74571", "#B894A6", "#71BB8C", "#00B433",
"#789EC9", "#6D80BA", "#953F00", "#5EFF03", "#E4FFFC", "#1BE177", "#BCB1E5", "#76912F",
"#003109", "#0060CD", "#D20096", "#895563", "#29201D", "#5B3213", "#A76F42", "#89412E",
"#1A3A2A", "#494B5A", "#A88C85", "#F4ABAA", "#A3F3AB", "#00C6C8", "#EA8B66", "#958A9F",
"#BDC9D2", "#9FA064", "#BE4700", "#658188", "#83A485", "#453C23", "#47675D", "#3A3F00",
"#061203", "#DFFB71", "#868E7E", "#98D058", "#6C8F7D", "#D7BFC2", "#3C3E6E", "#D83D66",
"#2F5D9B", "#6C5E46", "#D25B88", "#5B656C", "#00B57F", "#545C46", "#866097", "#365D25",
"#252F99", "#00CCFF", "#674E60", "#FC009C", "#92896B", "#1E2324", "#DEC9B2", "#9D4948",
"#85ABB4", "#342142", "#D09685", "#A4ACAC", "#00FFFF", "#AE9C86", "#742A33", "#0E72C5",
"#AFD8EC", "#C064B9", "#91028C", "#FEEDBF", "#FFB789", "#9CB8E4", "#AFFFD1", "#2A364C",
"#4F4A43", "#647095", "#34BBFF", "#807781", "#920003", "#B3A5A7", "#018615", "#F1FFC8",
"#976F5C", "#FF3BC1", "#FF5F6B", "#077D84", "#F56D93", "#5771DA", "#4E1E2A", "#830055",
"#02D346", "#BE452D", "#00905E", "#BE0028", "#6E96E3", "#007699", "#FEC96D", "#9C6A7D",
"#3FA1B8", "#893DE3", "#79B4D6", "#7FD4D9", "#6751BB", "#B28D2D", "#E27A05", "#DD9CB8",
"#AABC7A", "#980034", "#561A02", "#8F7F00", "#635000", "#CD7DAE", "#8A5E2D", "#FFB3E1",
"#6B6466", "#C6D300", "#0100E2", "#88EC69", "#8FCCBE", "#21001C", "#511F4D", "#E3F6E3",
"#FF8EB1", "#6B4F29", "#A37F46", "#6A5950", "#1F2A1A", "#04784D", "#101835", "#E6E0D0",
"#FF74FE", "#00A45F", "#8F5DF8", "#4B0059", "#412F23", "#D8939E", "#DB9D72", "#604143",
"#B5BACE", "#989EB7", "#D2C4DB", "#A587AF", "#77D796", "#7F8C94", "#FF9B03", "#555196",
"#31DDAE", "#74B671", "#802647", "#2A373F", "#014A68", "#696628", "#4C7B6D", "#002C27",
"#7A4522", "#3B5859", "#E5D381", "#FFF3FF", "#679FA0", "#261300", "#2C5742", "#9131AF",
"#AF5D88", "#C7706A", "#61AB1F", "#8CF2D4", "#C5D9B8", "#9FFFFB", "#BF45CC", "#493941",
"#863B60", "#B90076", "#003177", "#C582D2", "#C1B394", "#602B70", "#887868", "#BABFB0",
"#030012", "#D1ACFE", "#7FDEFE", "#4B5C71", "#A3A097", "#E66D53", "#637B5D", "#92BEA5",
"#00F8B3", "#BEDDFF", "#3DB5A7", "#DD3248", "#B6E4DE", "#427745", "#598C5A", "#B94C59",
"#8181D5", "#94888B", "#FED6BD", "#536D31", "#6EFF92", "#E4E8FF", "#20E200", "#FFD0F2",
"#4C83A1", "#BD7322", "#915C4E", "#8C4787", "#025117", "#A2AA45", "#2D1B21", "#A9DDB0",
"#FF4F78", "#528500", "#009A2E", "#17FCE4", "#71555A", "#525D82", "#00195A", "#967874",
"#555558", "#0B212C", "#1E202B", "#EFBFC4", "#6F9755", "#6F7586", "#501D1D", "#372D00",
"#741D16", "#5EB393", "#B5B400", "#DD4A38", "#363DFF", "#AD6552", "#6635AF", "#836BBA",
"#98AA7F", "#464836", "#322C3E", "#7CB9BA", "#5B6965", "#707D3D", "#7A001D", "#6E4636",
"#443A38", "#AE81FF", "#489079", "#897334", "#009087", "#DA713C", "#361618", "#FF6F01",
"#006679", "#370E77", "#4B3A83", "#C9E2E6", "#C44170", "#FF4526", "#73BE54", "#C4DF72",
"#ADFF60", "#00447D", "#DCCEC9", "#BD9479", "#656E5B", "#EC5200", "#FF6EC2", "#7A617E",
"#DDAEA2", "#77837F", "#A53327", "#608EFF", "#B599D7", "#A50149", "#4E0025", "#C9B1A9",
"#03919A", "#1B2A25", "#E500F1", "#982E0B", "#B67180", "#E05859", "#006039", "#578F9B",
"#305230", "#CE934C", "#B3C2BE", "#C0BAC0", "#B506D3", "#170C10", "#4C534F", "#224451",
"#3E4141", "#78726D", "#B6602B", "#200441", "#DDB588", "#497200", "#C5AAB6", "#033C61",
"#71B2F5", "#A9E088", "#4979B0", "#A2C3DF", "#784149", "#2D2B17", "#3E0E2F", "#57344C",
"#0091BE", "#E451D1", "#4B4B6A", "#5C011A", "#7C8060", "#FF9491", "#4C325D", "#005C8B",
"#E5FDA4", "#68D1B6", "#032641", "#140023", "#8683A9", "#CFFF00", "#A72C3E", "#34475A",
"#B1BB9A", "#B4A04F", "#8D918E", "#A168A6", "#813D3A", "#425218", "#DA8386", "#776133",
"#563930", "#8498AE", "#90C1D3", "#B5666B", "#9B585E", "#856465", "#AD7C90", "#E2BC00",
"#E3AAE0", "#B2C2FE", "#FD0039", "#009B75", "#FFF46D", "#E87EAC", "#DFE3E6", "#848590",
"#AA9297", "#83A193", "#577977", "#3E7158", "#C64289", "#EA0072", "#C4A8CB", "#55C899",
"#E78FCF", "#004547", "#F6E2E3", "#966716", "#378FDB", "#435E6A", "#DA0004", "#1B000F",
"#5B9C8F", "#6E2B52", "#011115", "#E3E8C4", "#AE3B85", "#EA1CA9", "#FF9E6B", "#457D8B",
"#92678B", "#00CDBB", "#9CCC04", "#002E38", "#96C57F", "#CFF6B4", "#492818", "#766E52",
"#20370E", "#E3D19F", "#2E3C30", "#B2EACE", "#F3BDA4", "#A24E3D", "#976FD9", "#8C9FA8",
"#7C2B73", "#4E5F37", "#5D5462", "#90956F", "#6AA776", "#DBCBF6", "#DA71FF", "#987C95",
"#52323C", "#BB3C42", "#584D39", "#4FC15F", "#A2B9C1", "#79DB21", "#1D5958", "#BD744E",
"#160B00", "#20221A", "#6B8295", "#00E0E4", "#102401", "#1B782A", "#DAA9B5", "#B0415D",
"#859253", "#97A094", "#06E3C4", "#47688C", "#7C6755", "#075C00", "#7560D5", "#7D9F00",
"#C36D96", "#4D913E", "#5F4276", "#FCE4C8", "#303052", "#4F381B", "#E5A532", "#706690",
"#AA9A92", "#237363", "#73013E", "#FF9079", "#A79A74", "#029BDB", "#FF0169", "#C7D2E7",
"#CA8869", "#80FFCD", "#BB1F69", "#90B0AB", "#7D74A9", "#FCC7DB", "#99375B", "#00AB4D",
"#ABAED1", "#BE9D91", "#E6E5A7", "#332C22", "#DD587B", "#F5FFF7", "#5D3033", "#6D3800",
"#FF0020", "#B57BB3", "#D7FFE6", "#C535A9", "#260009", "#6A8781", "#A8ABB4", "#D45262",
"#794B61", "#4621B2", "#8DA4DB", "#C7C890", "#6FE9AD", "#A243A7", "#B2B081", "#181B00",
"#286154", "#4CA43B", "#6A9573", "#A8441D", "#5C727B", "#738671", "#D0CFCB", "#897B77",
"#1F3F22", "#4145A7", "#DA9894", "#A1757A", "#63243C", "#ADAAFF", "#00CDE2", "#DDBC62",
"#698EB1", "#208462", "#00B7E0", "#614A44", "#9BBB57", "#7A5C54", "#857A50", "#766B7E",
"#014833", "#FF8347", "#7A8EBA", "#274740", "#946444", "#EBD8E6", "#646241", "#373917",
"#6AD450", "#81817B", "#D499E3", "#979440", "#011A12", "#526554", "#B5885C", "#A499A5",
"#03AD89", "#B3008B", "#E3C4B5", "#96531F", "#867175", "#74569E", "#617D9F", "#E70452",
"#067EAF", "#A697B6", "#B787A8", "#9CFF93", "#311D19", "#3A9459", "#6E746E", "#B0C5AE",
"#84EDF7", "#ED3488", "#754C78", "#384644", "#C7847B", "#00B6C5", "#7FA670", "#C1AF9E",
"#2A7FFF", "#72A58C", "#FFC07F", "#9DEBDD", "#D97C8E", "#7E7C93", "#62E674", "#B5639E",
"#FFA861", "#C2A580", "#8D9C83", "#B70546", "#372B2E", "#0098FF", "#985975", "#20204C",
"#FF6C60", "#445083", "#8502AA", "#72361F", "#9676A3", "#484449", "#CED6C2", "#3B164A",
"#CCA763", "#2C7F77", "#02227B", "#A37E6F", "#CDE6DC", "#CDFFFB", "#BE811A", "#F77183",
"#EDE6E2", "#CDC6B4", "#FFE09E", "#3A7271", "#FF7B59", "#4E4E01", "#4AC684", "#8BC891",
"#BC8A96", "#CF6353", "#DCDE5C", "#5EAADD", "#F6A0AD", "#E269AA", "#A3DAE4", "#436E83",
"#002E17", "#ECFBFF", "#A1C2B6", "#50003F", "#71695B", "#67C4BB", "#536EFF", "#5D5A48",
"#890039", "#969381", "#371521", "#5E4665", "#AA62C3", "#8D6F81", "#2C6135", "#410601",
"#564620", "#E69034", "#6DA6BD", "#E58E56", "#E3A68B", "#48B176", "#D27D67", "#B5B268",
"#7F8427", "#FF84E6", "#435740", "#EAE408", "#F4F5FF", "#325800", "#4B6BA5", "#ADCEFF",
"#9B8ACC", "#885138", "#5875C1", "#7E7311", "#FEA5CA", "#9F8B5B", "#A55B54", "#89006A",
"#AF756F", "#2A2000", "#576E4A", "#7F9EFF", "#7499A1", "#FFB550", "#00011E", "#D1511C",
"#688151", "#BC908A", "#78C8EB", "#8502FF", "#483D30", "#C42221", "#5EA7FF", "#785715",
"#0CEA91", "#FFFAED", "#B3AF9D", "#3E3D52", "#5A9BC2", "#9C2F90", "#8D5700", "#ADD79C",
"#00768B", "#337D00", "#C59700", "#3156DC", "#944575", "#ECFFDC", "#D24CB2", "#97703C",
"#4C257F", "#9E0366", "#88FFEC", "#B56481", "#396D2B", "#56735F", "#988376", "#9BB195",
"#A9795C", "#E4C5D3", "#9F4F67", "#1E2B39", "#664327", "#AFCE78", "#322EDF", "#86B487",
"#C23000", "#ABE86B", "#96656D", "#250E35", "#A60019", "#0080CF", "#CAEFFF", "#323F61",
"#A449DC", "#6A9D3B", "#FF5AE4", "#636A01", "#D16CDA", "#736060", "#FFBAAD", "#D369B4",
"#FFDED6", "#6C6D74", "#927D5E", "#845D70", "#5B62C1", "#2F4A36", "#E45F35", "#FF3B53",
"#AC84DD", "#762988", "#70EC98", "#408543", "#2C3533", "#2E182D", "#323925", "#19181B",
"#2F2E2C", "#023C32", "#9B9EE2", "#58AFAD", "#5C424D", "#7AC5A6", "#685D75", "#B9BCBD",
"#834357", "#1A7B42", "#2E57AA", "#E55199", "#316E47", "#CD00C5", "#6A004D", "#7FBBEC",
"#F35691", "#D7C54A", "#62ACB7", "#CBA1BC", "#A28A9A", "#6C3F3B", "#FFE47D", "#DCBAE3",
"#5F816D", "#3A404A", "#7DBF32", "#E6ECDC", "#852C19", "#285366", "#B8CB9C", "#0E0D00",
"#4B5D56", "#6B543F", "#E27172", "#0568EC", "#2EB500", "#D21656", "#EFAFFF", "#682021",
"#2D2011", "#DA4CFF", "#70968E", "#FF7B7D", "#4A1930", "#E8C282", "#E7DBBC", "#A68486",
"#1F263C", "#36574E", "#52CE79", "#ADAAA9", "#8A9F45", "#6542D2", "#00FB8C", "#5D697B",
"#CCD27F", "#94A5A1", "#790229", "#E383E6", "#7EA4C1", "#4E4452", "#4B2C00", "#620B70",
"#314C1E", "#874AA6", "#E30091", "#66460A", "#EB9A8B", "#EAC3A3", "#98EAB3", "#AB9180",
"#B8552F", "#1A2B2F", "#94DDC5", "#9D8C76", "#9C8333", "#94A9C9", "#392935", "#8C675E",
"#CCE93A", "#917100", "#01400B", "#449896", "#1CA370", "#E08DA7", "#8B4A4E", "#667776",
"#4692AD", "#67BDA8", "#69255C", "#D3BFFF", "#4A5132", "#7E9285", "#77733C", "#E7A0CC",
"#51A288", "#2C656A", "#4D5C5E", "#C9403A", "#DDD7F3", "#005844", "#B4A200", "#488F69",
"#858182", "#D4E9B9", "#3D7397", "#CAE8CE", "#D60034", "#AA6746", "#9E5585", "#BA6200"
};
J'ai mis en ligne une page pour générer des couleurs visuellement distinctes:
http://phrogz.net/css/distinct-colors.html
Contrairement à d'autres réponses ici qui traversent uniformément l'espace RVB ou HSV (où il y a ne relation non linéaire entre les valeurs des axes et les différences de perception ), ma page utilise la norme CMI (I: c ) algorithme de distance de couleur pour éviter que deux couleurs ne soient trop proches visuellement.
Le dernier onglet de la page vous permet de trier les valeurs de plusieurs façons, puis de les entrelacer (ordre aléatoire) afin d'obtenir des couleurs très distinctes placées les unes à côté des autres.
Au moment de la rédaction de cet article, cela ne fonctionne bien que dans Chrome et Safari, avec un cale pour Firefox; il utilise des curseurs d'entrée de plage HTML5 dans l'interface, qui IE9 et Firefox ne prennent pas encore en charge nativement.
Je pense que l'espace HSV (ou HSL) a plus d'opportunités ici. Si la conversion supplémentaire ne vous dérange pas, il est assez facile de parcourir toutes les couleurs en tournant simplement la valeur de la teinte. Si cela ne suffit pas, vous pouvez modifier les valeurs Saturation/Valeur/Luminosité et recommencer la rotation. Ou, vous pouvez toujours décaler les valeurs de teinte ou modifier votre angle "pas à pas" et tourner plusieurs fois.
Il y a une faille dans les solutions RVB précédentes. Ils ne profitent pas de tout l'espace colorimétrique car ils utilisent une valeur de couleur et 0 pour les canaux:
#006600
#330000
#FF00FF
Au lieu de cela, ils devraient utiliser toutes les valeurs de couleur possibles pour générer des couleurs mélangées qui peuvent avoir jusqu'à 3 valeurs différentes sur les canaux de couleur:
#336600
#FF0066
#33FF66
En utilisant l'espace couleur complet, vous pouvez générer des couleurs plus distinctes. Par exemple, si vous avez 4 valeurs par canal, 4 * 4 * 4 = 64 couleurs peuvent être générées. Avec l'autre schéma, seules 4 * 7 + 1 = 29 couleurs peuvent être générées.
Si vous voulez N couleurs, alors le nombre de valeurs par canal requis est: ceil (cube_root (N))
Avec cela, vous pouvez ensuite déterminer les valeurs possibles (plage 0-255) (python):
max = 255
segs = int(num**(Decimal("1.0")/3))
step = int(max/segs)
p = [(i*step) for i in xrange(segs)]
values = [max]
values.extend(p)
Ensuite, vous pouvez parcourir les couleurs RVB (ce n'est pas recommandé):
total = 0
for red in values:
for green in values:
for blue in values:
if total <= N:
print color(red, green, blue)
total += 1
Les boucles imbriquées fonctionneront, mais ne sont pas recommandées car elles favoriseront le canal bleu et les couleurs résultantes n'auront pas assez de rouge (N sera probablement inférieur au nombre de toutes les valeurs de couleur possibles).
Vous pouvez créer un meilleur algorithme pour les boucles où chaque canal est traité de manière égale et des valeurs de couleur plus distinctes sont privilégiées par rapport aux petites.
J'ai une solution, mais je ne voulais pas la publier car elle n'est pas la plus facile à comprendre ou efficace. Mais, vous pouvez voir la solution si vous le voulez vraiment.
Voici un échantillon de 64 couleurs générées: 64 couleurs
J'avais besoin de la même fonctionnalité, sous une forme simple.
Ce dont j'avais besoin était de générer des couleurs aussi uniques que possible à partir d'une valeur d'index croissante.
Voici le code, en C # (toute autre implémentation de langage devrait être très similaire)
Le mécanisme est très simple
Un modèle de color_writers est généré à partir des valeurs indexA de 0 à 7.
Pour les indices <8, ces couleurs sont = color_writer [indexA] * 255.
Pour les indices entre 8 et 15, ces couleurs sont = color_writer [indexA] * 255 + (color_writer [indexA + 1]) * 127
Pour les indices entre 16 et 23, ces couleurs sont = color_writer [indexA] * 255 + (color_writer [indexA + 1]) * 127 + (color_writer [indexA + 2]) * 63
Etc:
private System.Drawing.Color GetRandColor(int index)
{
byte red = 0;
byte green = 0;
byte blue = 0;
for (int t = 0; t <= index / 8; t++)
{
int index_a = (index+t) % 8;
int index_b = index_a / 2;
//Color writers, take on values of 0 and 1
int color_red = index_a % 2;
int color_blue = index_b % 2;
int color_green = ((index_b + 1) % 3) % 2;
int add = 255 / (t + 1);
red = (byte)(red+color_red * add);
green = (byte)(green + color_green * add);
blue = (byte)(blue + color_blue * add);
}
Color color = Color.FromArgb(red, green, blue);
return color;
}
Remarque: Pour éviter de générer des couleurs vives et difficiles à voir (dans cet exemple: jaune sur fond blanc), vous pouvez le modifier avec une boucle récursive:
int skip_index = 0;
private System.Drawing.Color GetRandColor(int index)
{
index += skip_index;
byte red = 0;
byte green = 0;
byte blue = 0;
for (int t = 0; t <= index / 8; t++)
{
int index_a = (index+t) % 8;
int index_b = index_a / 2;
//Color writers, take on values of 0 and 1
int color_red = index_a % 2;
int color_blue = index_b % 2;
int color_green = ((index_b + 1) % 3) % 2;
int add = 255 / (t + 1);
red = (byte)(red + color_red * add);
green = (byte)(green + color_green * add);
blue = (byte)(blue + color_blue * add);
}
if(red > 200 && green > 200)
{
skip_index++;
return GetRandColor(index);
}
Color color = Color.FromArgb(red, green, blue);
return color;
}
J'ai implémenté cet algorithme de manière plus courte
void ColorValue::SetColorValue( double r, double g, double b, ColorType myType )
{
this->c[0] = r;
this->c[1] = g;
this->c[2] = b;
this->type = myType;
}
DistinctColorGenerator::DistinctColorGenerator()
{
mFactor = 255;
mColorsGenerated = 0;
mpColorCycle = new ColorValue[6];
mpColorCycle[0].SetColorValue( 1.0, 0.0, 0.0, TYPE_RGB);
mpColorCycle[1].SetColorValue( 0.0, 1.0, 0.0, TYPE_RGB);
mpColorCycle[2].SetColorValue( 0.0, 0.0, 1.0, TYPE_RGB);
mpColorCycle[3].SetColorValue( 1.0, 1.0, 0.0, TYPE_RGB);
mpColorCycle[4].SetColorValue( 1.0, 0.0, 1.0, TYPE_RGB);
mpColorCycle[5].SetColorValue( 0.0, 1.0, 1.0, TYPE_RGB);
}
//----------------------------------------------------------
ColorValue DistinctColorGenerator::GenerateNewColor()
{
int innerCycleNr = mColorsGenerated % 6;
int outerCycleNr = mColorsGenerated / 6;
int cycleSize = pow( 2, (int)(log((double)(outerCycleNr)) / log( 2.0 ) ) );
int insideCycleCounter = outerCycleNr % cyclesize;
if ( outerCycleNr == 0)
{
mFactor = 255;
}
else
{
mFactor = ( 256 / ( 2 * cycleSize ) ) + ( insideCycleCounter * ( 256 / cycleSize ) );
}
ColorValue newColor = mpColorCycle[innerCycleNr] * mFactor;
mColorsGenerated++;
return newColor;
}
Je commencerais avec une luminosité définie à 100% et ferais le tour des couleurs primaires en premier:
FF0000, 00FF00, 0000FF
puis les combinaisons
FFFF00, FF00FF, 00FFFF
ensuite, par exemple, divisez par deux la luminosité et faites le même tour. Il n'y a pas trop de couleurs vraiment clairement distinctes, après cela, je commencerais à varier la largeur de la ligne et à faire des lignes pointillées/pointillées, etc.
Vous pouvez également considérer l'espace colorimétrique comme toutes les combinaisons de trois nombres de 0 à 255 inclus. Il s'agit de la représentation en base 255 d'un nombre compris entre 0 et 255 ^ 3, forcé d'avoir trois décimales (ajoutez des zéros à la fin si nécessaire).
Donc, pour générer x nombre de couleurs, vous devez calculer x pourcentages régulièrement espacés, de 0 à 100. Obtenez des nombres en multipliant ces pourcentages par 255 ^ 3, convertissez ces nombres en base 255 et ajoutez des zéros comme mentionné précédemment.
Algorithme de conversion de base, pour référence (en pseudocode assez proche de C #):
int num = (number to convert);
int baseConvert = (desired base, 255 in this case);
(array of ints) nums = new (array of ints);
int x = num;
double digits = Math.Log(num, baseConvert); //or ln(num) / ln(baseConvert)
int numDigits = (digits - Math.Ceiling(digits) == 0 ? (int)(digits + 1) : (int)Math.Ceiling(digits)); //go up one if it turns out even
for (int i = 0; i < numDigits; i++)
{
int toAdd = ((int)Math.Floor(x / Math.Pow((double)convertBase, (double)(numDigits - i - 1))));
//Formula for 0th digit: d = num / (convertBase^(numDigits - 1))
//Then subtract (d * convertBase^(numDigits - 1)) from the num and continue
nums.Add(toAdd);
x -= toAdd * (int)Math.Pow((double)convertBase, (double)(numDigits - i - 1));
}
return nums;
Vous devrez peut-être également faire quelque chose pour apporter un peu de gamme, pour éviter d'avoir du blanc et du noir, si vous le souhaitez. Ces chiffres ne sont pas en fait une échelle de couleurs lisse, mais ils généreront des couleurs distinctes si vous n'en avez pas trop.
Cette question a plus sur la conversion de base en .NET.
Dans le cas où quelqu'un a besoin de générer une couleur sombre moyenne à élevée aléatoire pour le premier plan blanc en C #, voici le code.
[DllImport("shlwapi.dll")]
public static extern int ColorHLSToRGB(int H, int L, int S);
public static string GetRandomDarkColor()
{
int h = 0, s = 0, l = 0;
h = (RandomObject.Next(1, 2) % 2 == 0) ? RandomObject.Next(0, 180) : iApp.RandomObject.Next(181, 360);
s = RandomObject.Next(90, 160);
l = RandomObject.Next(80, 130);
return System.Drawing.ColorTranslator.FromWin32(ColorHLSToRGB(h, l, s)).ToHex();
}
private static string ToHex(this System.Drawing.Color c)
{
return "#" + c.R.ToString("X2") + c.G.ToString("X2") + c.B.ToString("X2");
}
Vous pouvez remplacer RandomObject
par votre propre objet de classe Random
.
pour obtenir la nième couleur. Juste ce genre de code serait suffisant. Ce que j'ai utilisé dans mon problème de mise en cluster opencv. Cela créera des couleurs différentes à mesure que le col change.
for(int col=1;col<CLUSTER_COUNT+1;col++){
switch(col%6)
{
case 1:cout<<Scalar(0,0,(int)(255/(int)(col/6+1)))<<endl;break;
case 2:cout<<Scalar(0,(int)(255/(int)(col/6+1)),0)<<endl;break;
case 3:cout<<Scalar((int)(255/(int)(col/6+1)),0,0)<<endl;break;
case 4:cout<<Scalar(0,(int)(255/(int)(col/6+1)),(int)(255/(int)(col/6+1)))<<endl;break;
case 5:cout<<Scalar((int)(255/(int)(col/6+1)),0,(int)(255/(int)(col/6+1)))<<endl;break;
case 0:cout<<Scalar((int)(255/(int)(col/6)),(int)(255/(int)(col/6)),0)<<endl;break;
}
}