Je recherche une fonctionnalité très simple d’obscurcissement (comme chiffrer et déchiffrer mais pas nécessairement sécurisée) pour certaines données. Ce n'est pas une mission critique. J'ai besoin de quelque chose pour garder les gens honnêtes honnêtes, mais quelque chose d'un peu plus fort que ROT1 ou Base64 .
Je préférerais quelque chose qui est déjà inclus dans le . NET framework 2.0, donc je n'ai pas à m'inquiéter des dépendances externes.
Je ne veux vraiment pas avoir à manipuler des clés publiques/privées, etc. Je ne connais pas grand chose au cryptage, mais j'en sais assez pour savoir que tout ce que j'ai écrit serait sans valeur ... En fait, Je ferais probablement des calculs et ferais en sorte que ce soit trivial.
Les autres réponses ici fonctionnent bien, mais AES est un algorithme de cryptage plus sûr et à jour. C’est une classe que j’ai obtenue il ya quelques années pour effectuer le chiffrement AES que j’ai modifiée au fil du temps pour être plus conviviale pour les applications Web (par exemple, j’ai construit des méthodes Encrypt/Decrypt qui fonctionnent avec des chaînes conviviales pour les URL). Il a également les méthodes qui fonctionnent avec les tableaux d'octets.
REMARQUE: vous devez utiliser des valeurs différentes dans les tableaux Key (32 octets) et Vector (16 octets)! Vous ne voudriez pas que quelqu'un trouve vos clés en supposant que vous utilisiez ce code tel quel! Tout ce que vous avez à faire est de changer certains des nombres (doit être <= 255) dans les tableaux de clés et de vecteurs (j'ai laissé une valeur non valide dans le tableau de vecteur pour vous assurer de le faire ...). Vous pouvez utiliser https://www.random.org/bytes/ pour générer facilement un nouvel ensemble:
Son utilisation est simple: il suffit d'instancier la classe, puis d'appeler (généralement) EncryptToString (chaîne StringToEncrypt) et DecryptString (chaîne StringToDecrypt) en tant que méthodes. Cela ne pourrait pas être plus facile (ou plus sûr) une fois que vous avez mis en place ce cours.
using System;
using System.Data;
using System.Security.Cryptography;
using System.IO;
public class SimpleAES
{
// Change these keys
private byte[] Key = __Replace_Me__({ 123, 217, 19, 11, 24, 26, 85, 45, 114, 184, 27, 162, 37, 112, 222, 209, 241, 24, 175, 144, 173, 53, 196, 29, 24, 26, 17, 218, 131, 236, 53, 209 });
// a hardcoded IV should not be used for production AES-CBC code
// IVs should be unpredictable per ciphertext
private byte[] Vector = __Replace_Me__({ 146, 64, 191, 111, 23, 3, 113, 119, 231, 121, 2521, 112, 79, 32, 114, 156 });
private ICryptoTransform EncryptorTransform, DecryptorTransform;
private System.Text.UTF8Encoding UTFEncoder;
public SimpleAES()
{
//This is our encryption method
RijndaelManaged rm = new RijndaelManaged();
//Create an encryptor and a decryptor using our encryption method, key, and vector.
EncryptorTransform = rm.CreateEncryptor(this.Key, this.Vector);
DecryptorTransform = rm.CreateDecryptor(this.Key, this.Vector);
//Used to translate bytes to text and vice versa
UTFEncoder = new System.Text.UTF8Encoding();
}
/// -------------- Two Utility Methods (not used but may be useful) -----------
/// Generates an encryption key.
static public byte[] GenerateEncryptionKey()
{
//Generate a Key.
RijndaelManaged rm = new RijndaelManaged();
rm.GenerateKey();
return rm.Key;
}
/// Generates a unique encryption vector
static public byte[] GenerateEncryptionVector()
{
//Generate a Vector
RijndaelManaged rm = new RijndaelManaged();
rm.GenerateIV();
return rm.IV;
}
/// ----------- The commonly used methods ------------------------------
/// Encrypt some text and return a string suitable for passing in a URL.
public string EncryptToString(string TextValue)
{
return ByteArrToString(Encrypt(TextValue));
}
/// Encrypt some text and return an encrypted byte array.
public byte[] Encrypt(string TextValue)
{
//Translates our text value into a byte array.
Byte[] bytes = UTFEncoder.GetBytes(TextValue);
//Used to stream the data in and out of the CryptoStream.
MemoryStream memoryStream = new MemoryStream();
/*
* We will have to write the unencrypted bytes to the stream,
* then read the encrypted result back from the stream.
*/
#region Write the decrypted value to the encryption stream
CryptoStream cs = new CryptoStream(memoryStream, EncryptorTransform, CryptoStreamMode.Write);
cs.Write(bytes, 0, bytes.Length);
cs.FlushFinalBlock();
#endregion
#region Read encrypted value back out of the stream
memoryStream.Position = 0;
byte[] encrypted = new byte[memoryStream.Length];
memoryStream.Read(encrypted, 0, encrypted.Length);
#endregion
//Clean up.
cs.Close();
memoryStream.Close();
return encrypted;
}
/// The other side: Decryption methods
public string DecryptString(string EncryptedString)
{
return Decrypt(StrToByteArray(EncryptedString));
}
/// Decryption when working with byte arrays.
public string Decrypt(byte[] EncryptedValue)
{
#region Write the encrypted value to the decryption stream
MemoryStream encryptedStream = new MemoryStream();
CryptoStream decryptStream = new CryptoStream(encryptedStream, DecryptorTransform, CryptoStreamMode.Write);
decryptStream.Write(EncryptedValue, 0, EncryptedValue.Length);
decryptStream.FlushFinalBlock();
#endregion
#region Read the decrypted value from the stream.
encryptedStream.Position = 0;
Byte[] decryptedBytes = new Byte[encryptedStream.Length];
encryptedStream.Read(decryptedBytes, 0, decryptedBytes.Length);
encryptedStream.Close();
#endregion
return UTFEncoder.GetString(decryptedBytes);
}
/// Convert a string to a byte array. NOTE: Normally we'd create a Byte Array from a string using an ASCII encoding (like so).
// System.Text.ASCIIEncoding encoding = new System.Text.ASCIIEncoding();
// return encoding.GetBytes(str);
// However, this results in character values that cannot be passed in a URL. So, instead, I just
// lay out all of the byte values in a long string of numbers (three per - must pad numbers less than 100).
public byte[] StrToByteArray(string str)
{
if (str.Length == 0)
throw new Exception("Invalid string value in StrToByteArray");
byte val;
byte[] byteArr = new byte[str.Length / 3];
int i = 0;
int j = 0;
do
{
val = byte.Parse(str.Substring(i, 3));
byteArr[j++] = val;
i += 3;
}
while (i < str.Length);
return byteArr;
}
// Same comment as above. Normally the conversion would use an ASCII encoding in the other direction:
// System.Text.ASCIIEncoding enc = new System.Text.ASCIIEncoding();
// return enc.GetString(byteArr);
public string ByteArrToString(byte[] byteArr)
{
byte val;
string tempStr = "";
for (int i = 0; i <= byteArr.GetUpperBound(0); i++)
{
val = byteArr[i];
if (val < (byte)10)
tempStr += "00" + val.ToString();
else if (val < (byte)100)
tempStr += "0" + val.ToString();
else
tempStr += val.ToString();
}
return tempStr;
}
}
J'ai nettoyé SimpleAES (ci-dessus) pour mon usage. Méthodes de cryptage/décryptage compliquées fixes; méthodes séparées d'encodage des tampons d'octet, des chaînes et des chaînes conviviales pour les URL; fait appel aux bibliothèques existantes pour le codage d’URL.
Le code est petit, plus simple, plus rapide et le résultat est plus concis. Par exemple, [email protected]
produit:
SimpleAES: "096114178117140150104121138042115022037019164188092040214235183167012211175176167001017163166152"
SimplerAES: "YHKydYyWaHmKKnMWJROkvFwo1uu3pwzTr7CnARGjppg%3d"
Code:
public class SimplerAES
{
private static byte[] key = __Replace_Me__({ 123, 217, 19, 11, 24, 26, 85, 45, 114, 184, 27, 162, 37, 112, 222, 209, 241, 24, 175, 144, 173, 53, 196, 29, 24, 26, 17, 218, 131, 236, 53, 209 });
// a hardcoded IV should not be used for production AES-CBC code
// IVs should be unpredictable per ciphertext
private static byte[] vector = __Replace_Me_({ 146, 64, 191, 111, 23, 3, 113, 119, 231, 121, 221, 112, 79, 32, 114, 156 });
private ICryptoTransform encryptor, decryptor;
private UTF8Encoding encoder;
public SimplerAES()
{
RijndaelManaged rm = new RijndaelManaged();
encryptor = rm.CreateEncryptor(key, vector);
decryptor = rm.CreateDecryptor(key, vector);
encoder = new UTF8Encoding();
}
public string Encrypt(string unencrypted)
{
return Convert.ToBase64String(Encrypt(encoder.GetBytes(unencrypted)));
}
public string Decrypt(string encrypted)
{
return encoder.GetString(Decrypt(Convert.FromBase64String(encrypted)));
}
public byte[] Encrypt(byte[] buffer)
{
return Transform(buffer, encryptor);
}
public byte[] Decrypt(byte[] buffer)
{
return Transform(buffer, decryptor);
}
protected byte[] Transform(byte[] buffer, ICryptoTransform transform)
{
MemoryStream stream = new MemoryStream();
using (CryptoStream cs = new CryptoStream(stream, transform, CryptoStreamMode.Write))
{
cs.Write(buffer, 0, buffer.Length);
}
return stream.ToArray();
}
}
Oui, ajoutez l'assemblage System.Security
, importez l'espace de noms System.Security.Cryptography
. Voici un exemple simple de chiffrement par algorithme symétrique (DES):
DESCryptoServiceProvider des = new DESCryptoServiceProvider();
des.GenerateKey();
byte[] key = des.Key; // save this!
ICryptoTransform encryptor = des.CreateEncryptor();
// encrypt
byte[] enc = encryptor.TransformFinalBlock(new byte[] { 1, 2, 3, 4 }, 0, 4);
ICryptoTransform decryptor = des.CreateDecryptor();
// decrypt
byte[] originalAgain = decryptor.TransformFinalBlock(enc, 0, enc.Length);
Debug.Assert(originalAgain[0] == 1);
Je pensais que j'ajouterais que j'ai amélioré Mud's SimplerAES en ajoutant un IV aléatoire qui est renvoyé à l'intérieur de la chaîne cryptée. Cela améliore le cryptage, car le cryptage de la même chaîne entraînera une sortie différente à chaque fois.
public class StringEncryption
{
private readonly Random random;
private readonly byte[] key;
private readonly RijndaelManaged rm;
private readonly UTF8Encoding encoder;
public StringEncryption()
{
this.random = new Random();
this.rm = new RijndaelManaged();
this.encoder = new UTF8Encoding();
this.key = Convert.FromBase64String("Your+Secret+Static+Encryption+Key+Goes+Here=");
}
public string Encrypt(string unencrypted)
{
var vector = new byte[16];
this.random.NextBytes(vector);
var cryptogram = vector.Concat(this.Encrypt(this.encoder.GetBytes(unencrypted), vector));
return Convert.ToBase64String(cryptogram.ToArray());
}
public string Decrypt(string encrypted)
{
var cryptogram = Convert.FromBase64String(encrypted);
if (cryptogram.Length < 17)
{
throw new ArgumentException("Not a valid encrypted string", "encrypted");
}
var vector = cryptogram.Take(16).ToArray();
var buffer = cryptogram.Skip(16).ToArray();
return this.encoder.GetString(this.Decrypt(buffer, vector));
}
private byte[] Encrypt(byte[] buffer, byte[] vector)
{
var encryptor = this.rm.CreateEncryptor(this.key, vector);
return this.Transform(buffer, encryptor);
}
private byte[] Decrypt(byte[] buffer, byte[] vector)
{
var decryptor = this.rm.CreateDecryptor(this.key, vector);
return this.Transform(buffer, decryptor);
}
private byte[] Transform(byte[] buffer, ICryptoTransform transform)
{
var stream = new MemoryStream();
using (var cs = new CryptoStream(stream, transform, CryptoStreamMode.Write))
{
cs.Write(buffer, 0, buffer.Length);
}
return stream.ToArray();
}
}
Et test unitaire bonus
[Test]
public void EncryptDecrypt()
{
// Arrange
var subject = new StringEncryption();
var originalString = "Testing123!£$";
// Act
var encryptedString1 = subject.Encrypt(originalString);
var encryptedString2 = subject.Encrypt(originalString);
var decryptedString1 = subject.Decrypt(encryptedString1);
var decryptedString2 = subject.Decrypt(encryptedString2);
// Assert
Assert.AreEqual(originalString, decryptedString1, "Decrypted string should match original string");
Assert.AreEqual(originalString, decryptedString2, "Decrypted string should match original string");
Assert.AreNotEqual(originalString, encryptedString1, "Encrypted string should not match original string");
Assert.AreNotEqual(encryptedString1, encryptedString2, "String should never be encrypted the same twice");
}
Une variante de marques (excellente) réponse
J'espère que cela t'aides
[TestFixture]
public class RijndaelHelperTests
{
[Test]
public void UseCase()
{
//These two values should not be hard coded in your code.
byte[] key = {251, 9, 67, 117, 237, 158, 138, 150, 255, 97, 103, 128, 183, 65, 76, 161, 7, 79, 244, 225, 146, 180, 51, 123, 118, 167, 45, 10, 184, 181, 202, 190};
byte[] vector = {214, 11, 221, 108, 210, 71, 14, 15, 151, 57, 241, 174, 177, 142, 115, 137};
using (var rijndaelHelper = new RijndaelHelper(key, vector))
{
var encrypt = rijndaelHelper.Encrypt("StringToEncrypt");
var decrypt = rijndaelHelper.Decrypt(encrypt);
Assert.AreEqual("StringToEncrypt", decrypt);
}
}
}
public class RijndaelHelper : IDisposable
{
Rijndael rijndael;
UTF8Encoding encoding;
public RijndaelHelper(byte[] key, byte[] vector)
{
encoding = new UTF8Encoding();
rijndael = Rijndael.Create();
rijndael.Key = key;
rijndael.IV = vector;
}
public byte[] Encrypt(string valueToEncrypt)
{
var bytes = encoding.GetBytes(valueToEncrypt);
using (var encryptor = rijndael.CreateEncryptor())
using (var stream = new MemoryStream())
using (var crypto = new CryptoStream(stream, encryptor, CryptoStreamMode.Write))
{
crypto.Write(bytes, 0, bytes.Length);
crypto.FlushFinalBlock();
stream.Position = 0;
var encrypted = new byte[stream.Length];
stream.Read(encrypted, 0, encrypted.Length);
return encrypted;
}
}
public string Decrypt(byte[] encryptedValue)
{
using (var decryptor = rijndael.CreateDecryptor())
using (var stream = new MemoryStream())
using (var crypto = new CryptoStream(stream, decryptor, CryptoStreamMode.Write))
{
crypto.Write(encryptedValue, 0, encryptedValue.Length);
crypto.FlushFinalBlock();
stream.Position = 0;
var decryptedBytes = new Byte[stream.Length];
stream.Read(decryptedBytes, 0, decryptedBytes.Length);
return encoding.GetString(decryptedBytes);
}
}
public void Dispose()
{
if (rijndael != null)
{
rijndael.Dispose();
}
}
}
[EDIT] Des années plus tard, je suis revenu pour dire: ne le faites pas! Voir Quel est le problème avec XOR cryptage? pour plus de détails.
Un cryptage bidirectionnel très simple et facile est le cryptage XOR.
mypass
.mypassmypassmypass...
)mypassmypassmypass...
).J'ai combiné ce que j'ai trouvé le meilleur de plusieurs réponses et commentaires.
Code:
/// <summary>
/// Simple encryption/decryption using a random initialization vector
/// and prepending it to the crypto text.
/// </summary>
/// <remarks>Based on multiple answers in http://stackoverflow.com/questions/165808/simple-two-way-encryption-for-c-sharp </remarks>
public class SimpleAes : IDisposable
{
/// <summary>
/// Initialization vector length in bytes.
/// </summary>
private const int IvBytes = 16;
/// <summary>
/// Must be exactly 16, 24 or 32 bytes long.
/// </summary>
private static readonly byte[] Key = Convert.FromBase64String("FILL ME WITH 24 (2 pad chars), 32 OR 44 (1 pad char) RANDOM CHARS"); // Base64 has a blowup of four-thirds (33%)
private readonly UTF8Encoding _encoder;
private readonly ICryptoTransform _encryptor;
private readonly RijndaelManaged _rijndael;
public SimpleAes()
{
_rijndael = new RijndaelManaged {Key = Key};
_rijndael.GenerateIV();
_encryptor = _rijndael.CreateEncryptor();
_encoder = new UTF8Encoding();
}
public string Decrypt(string encrypted)
{
return _encoder.GetString(Decrypt(Convert.FromBase64String(encrypted)));
}
public void Dispose()
{
_rijndael.Dispose();
_encryptor.Dispose();
}
public string Encrypt(string unencrypted)
{
return Convert.ToBase64String(Encrypt(_encoder.GetBytes(unencrypted)));
}
private byte[] Decrypt(byte[] buffer)
{
// IV is prepended to cryptotext
byte[] iv = buffer.Take(IvBytes).ToArray();
using (ICryptoTransform decryptor = _rijndael.CreateDecryptor(_rijndael.Key, iv))
{
return decryptor.TransformFinalBlock(buffer, IvBytes, buffer.Length - IvBytes);
}
}
private byte[] Encrypt(byte[] buffer)
{
// Prepend cryptotext with IV
byte [] inputBuffer = _encryptor.TransformFinalBlock(buffer, 0, buffer.Length);
return _rijndael.IV.Concat(inputBuffer).ToArray();
}
}
Mise à jour 2015-07-18: Correction d'une erreur dans la méthode privée Encrypt () par les commentaires de @bpsilver et @Evereq. IV a été accidentellement crypté, il est maintenant ajouté en clair comme prévu par Decrypt ().
Si vous souhaitez simplement un cryptage simple (c’est-à-dire qu’un pirate déterminé puisse s’enfoncer, mais en isolant la plupart des utilisateurs occasionnels), il suffit de choisir deux phrases secrètes de longueur égale, par exemple:
deoxyribonucleicacid
while (x>0) { x-- };
et xor vos données avec les deux (en passant les phrases secrètes si nécessaire)(une). Par exemple:
1111-2222-3333-4444-5555-6666-7777
deoxyribonucleicaciddeoxyribonucle
while (x>0) { x-- };while (x>0) {
Une personne cherchant dans votre binaire peut penser que la chaîne d'ADN est une clé, mais il est peu probable que le code C soit autre chose qu'une mémoire non initialisée enregistrée avec votre binaire.
(une) Gardez à l'esprit qu'il s'agit d'un très cryptage simple et, selon certaines définitions, il peut ne pas être considéré du tout comme un cryptage (car l'intention du cryptage est de empêcher l'accès non autorisé plutôt que de simplement c'est plus difficile). Bien que, bien sûr, même le cryptage le plus puissant ne soit pas sécurisé lorsque quelqu'un se tient au-dessus des détenteurs de clés munis d'un tuyau en acier.
Comme indiqué dans la première phrase, il s'agit d'un moyen de rendre suffisamment difficile la tâche de l'attaquant occasionnel pour qu'il passe à autre chose. Cela ressemble à la prévention des cambriolages sur votre maison - vous n'avez pas besoin de le rendre imprenable, vous avez juste besoin de le rendre moins enceinte que la maison voisine :-)
Le cryptage est simple: comme d'autres l'ont déjà souligné, l'espace de noms System.Security.Cryptography contient des classes qui effectuent tout le travail à votre place. Utilisez-les plutôt que toute solution maison.
Mais le décryptage est aussi facile. Le problème que vous avez n’est pas l’algorithme de cryptage, mais la protection de l’accès à la clé utilisée pour le décryptage.
J'utiliserais l'une des solutions suivantes:
DPAPI utilisant la classe ProtectedData avec la portée CurrentUser. C'est facile car vous n'avez pas à vous soucier d'une clé. Les données ne peuvent être déchiffrées que par le même utilisateur, donc inutile pour le partage de données entre utilisateurs ou ordinateurs.
DPAPI utilisant la classe ProtectedData avec la portée de LocalMachine. Bon pour par exemple protéger les données de configuration sur un seul serveur sécurisé. Mais toute personne pouvant se connecter à la machine peut la chiffrer, donc rien de bien sauf si le serveur est sécurisé.
Tout algorithme symétrique. J'utilise généralement la méthode statique SymmetricAlgorithm.Create () si je ne me soucie pas de quel algorithme est utilisé (en fait c'est Rijndael par défaut). Dans ce cas, vous devez protéger votre clé d’une manière ou d’une autre. Par exemple. vous pouvez l'obstruer d'une certaine manière et le cacher dans votre code. Mais sachez que toute personne assez intelligente pour décompiler votre code sera probablement capable de trouver la clé.
Je voulais poster ma solution car aucune des solutions ci-dessus n'est aussi simple que la mienne. Laissez-moi savoir ce que vous pensez:
// This will return an encrypted string based on the unencrypted parameter
public static string Encrypt(this string DecryptedValue)
{
HttpServerUtility.UrlTokenEncode(MachineKey.Protect(Encoding.UTF8.GetBytes(DecryptedValue.Trim())));
}
// This will return an unencrypted string based on the parameter
public static string Decrypt(this string EncryptedValue)
{
Encoding.UTF8.GetString(MachineKey.Unprotect(HttpServerUtility.UrlTokenDecode(EncryptedValue)));
}
Cela suppose que la MachineKey du serveur utilisée pour chiffrer la valeur est la même que celle utilisée pour déchiffrer la valeur. Si vous le souhaitez, vous pouvez spécifier une MachineKey statique dans le fichier Web.config afin que votre application puisse déchiffrer/chiffrer les données, quel que soit l'endroit où elles sont exécutées (par exemple, développement par rapport au serveur de production). Vous pouvez générer une clé de machine statique en suivant ces instructions .
Utilisation de TripleDESCryptoServiceProvider dans System.Security.Cryptography:
public static class CryptoHelper
{
private const string Key = "MyHashString";
private static TripleDESCryptoServiceProvider GetCryproProvider()
{
var md5 = new MD5CryptoServiceProvider();
var key = md5.ComputeHash(Encoding.UTF8.GetBytes(Key));
return new TripleDESCryptoServiceProvider() { Key = key, Mode = CipherMode.ECB, Padding = PaddingMode.PKCS7 };
}
public static string Encrypt(string plainString)
{
var data = Encoding.UTF8.GetBytes(plainString);
var tripleDes = GetCryproProvider();
var transform = tripleDes.CreateEncryptor();
var resultsByteArray = transform.TransformFinalBlock(data, 0, data.Length);
return Convert.ToBase64String(resultsByteArray);
}
public static string Decrypt(string encryptedString)
{
var data = Convert.FromBase64String(encryptedString);
var tripleDes = GetCryproProvider();
var transform = tripleDes.CreateDecryptor();
var resultsByteArray = transform.TransformFinalBlock(data, 0, data.Length);
return Encoding.UTF8.GetString(resultsByteArray);
}
}
J'ai changé this :
public string ByteArrToString(byte[] byteArr)
{
byte val;
string tempStr = "";
for (int i = 0; i <= byteArr.GetUpperBound(0); i++)
{
val = byteArr[i];
if (val < (byte)10)
tempStr += "00" + val.ToString();
else if (val < (byte)100)
tempStr += "0" + val.ToString();
else
tempStr += val.ToString();
}
return tempStr;
}
pour ça:
public string ByteArrToString(byte[] byteArr)
{
string temp = "";
foreach (byte b in byteArr)
temp += b.ToString().PadLeft(3, '0');
return temp;
}
À l'aide de la bibliothèque .Net Cryptography intégrée, cet exemple montre comment utiliser AES (Advanced Encryption Standard).
using System;
using System.IO;
using System.Security.Cryptography;
namespace Aes_Example
{
class AesExample
{
public static void Main()
{
try
{
string original = "Here is some data to encrypt!";
// Create a new instance of the Aes
// class. This generates a new key and initialization
// vector (IV).
using (Aes myAes = Aes.Create())
{
// Encrypt the string to an array of bytes.
byte[] encrypted = EncryptStringToBytes_Aes(original, myAes.Key, myAes.IV);
// Decrypt the bytes to a string.
string roundtrip = DecryptStringFromBytes_Aes(encrypted, myAes.Key, myAes.IV);
//Display the original data and the decrypted data.
Console.WriteLine("Original: {0}", original);
Console.WriteLine("Round Trip: {0}", roundtrip);
}
}
catch (Exception e)
{
Console.WriteLine("Error: {0}", e.Message);
}
}
static byte[] EncryptStringToBytes_Aes(string plainText, byte[] Key,byte[] IV)
{
// Check arguments.
if (plainText == null || plainText.Length <= 0)
throw new ArgumentNullException("plainText");
if (Key == null || Key.Length <= 0)
throw new ArgumentNullException("Key");
if (IV == null || IV.Length <= 0)
throw new ArgumentNullException("Key");
byte[] encrypted;
// Create an Aes object
// with the specified key and IV.
using (Aes aesAlg = Aes.Create())
{
aesAlg.Key = Key;
aesAlg.IV = IV;
// Create a decrytor to perform the stream transform.
ICryptoTransform encryptor = aesAlg.CreateEncryptor(aesAlg.Key, aesAlg.IV);
// Create the streams used for encryption.
using (MemoryStream msEncrypt = new MemoryStream())
{
using (CryptoStream csEncrypt = new CryptoStream(msEncrypt, encryptor, CryptoStreamMode.Write))
{
using (StreamWriter swEncrypt = new StreamWriter(csEncrypt))
{
//Write all data to the stream.
swEncrypt.Write(plainText);
}
encrypted = msEncrypt.ToArray();
}
}
}
// Return the encrypted bytes from the memory stream.
return encrypted;
}
static string DecryptStringFromBytes_Aes(byte[] cipherText, byte[] Key, byte[] IV)
{
// Check arguments.
if (cipherText == null || cipherText.Length <= 0)
throw new ArgumentNullException("cipherText");
if (Key == null || Key.Length <= 0)
throw new ArgumentNullException("Key");
if (IV == null || IV.Length <= 0)
throw new ArgumentNullException("Key");
// Declare the string used to hold
// the decrypted text.
string plaintext = null;
// Create an Aes object
// with the specified key and IV.
using (Aes aesAlg = Aes.Create())
{
aesAlg.Key = Key;
aesAlg.IV = IV;
// Create a decrytor to perform the stream transform.
ICryptoTransform decryptor = aesAlg.CreateDecryptor(aesAlg.Key, aesAlg.IV);
// Create the streams used for decryption.
using (MemoryStream msDecrypt = new MemoryStream(cipherText))
{
using (CryptoStream csDecrypt = new CryptoStream(msDecrypt, decryptor, CryptoStreamMode.Read))
{
using (StreamReader srDecrypt = new StreamReader(csDecrypt))
{
// Read the decrypted bytes from the decrypting stream
// and place them in a string.
plaintext = srDecrypt.ReadToEnd();
}
}
}
}
return plaintext;
}
}
}
L'espace de nom System.Security.Cryptography
contient les classes TripleDESCryptoServiceProvider
et RijndaelManaged
N'oubliez pas d'ajouter une référence à l'assemblage System.Security
.
J'utilise la réponse acceptée par Mark Brittingham et cela m'a beaucoup aidé. Récemment, j'ai dû envoyer du texte crypté à une organisation différente et c'est là que certains problèmes se sont posés. Le PO n’exige pas ces options, mais comme c’est une question courante, je publie ma modification (Encrypt
et Decrypt
fonctions empruntées à ici ):
RijndaelManaged
par défaut et un autre pour lequel des valeurs de propriété peuvent être spécifiées (en fonction d'un accord mutuel entre les parties qui cryptent et décryptent)Voici la classe (échantillon de test à la fin):
/// <summary>
/// Based on https://msdn.Microsoft.com/en-us/library/system.security.cryptography.rijndaelmanaged(v=vs.110).aspx
/// Uses UTF8 Encoding
/// http://security.stackexchange.com/a/90850
/// </summary>
public class AnotherAES : IDisposable
{
private RijndaelManaged rijn;
/// <summary>
/// Initialize algo with key, block size, key size, padding mode and cipher mode to be known.
/// </summary>
/// <param name="key">ASCII key to be used for encryption or decryption</param>
/// <param name="blockSize">block size to use for AES algorithm. 128, 192 or 256 bits</param>
/// <param name="keySize">key length to use for AES algorithm. 128, 192, or 256 bits</param>
/// <param name="paddingMode"></param>
/// <param name="cipherMode"></param>
public AnotherAES(string key, int blockSize, int keySize, PaddingMode paddingMode, CipherMode cipherMode)
{
rijn = new RijndaelManaged();
rijn.Key = Encoding.UTF8.GetBytes(key);
rijn.BlockSize = blockSize;
rijn.KeySize = keySize;
rijn.Padding = paddingMode;
rijn.Mode = cipherMode;
}
/// <summary>
/// Initialize algo just with key
/// Defaults for RijndaelManaged class:
/// Block Size: 256 bits (32 bytes)
/// Key Size: 128 bits (16 bytes)
/// Padding Mode: PKCS7
/// Cipher Mode: CBC
/// </summary>
/// <param name="key"></param>
public AnotherAES(string key)
{
rijn = new RijndaelManaged();
byte[] keyArray = Encoding.UTF8.GetBytes(key);
rijn.Key = keyArray;
}
/// <summary>
/// Based on https://msdn.Microsoft.com/en-us/library/system.security.cryptography.rijndaelmanaged(v=vs.110).aspx
/// Encrypt a string using RijndaelManaged encryptor.
/// </summary>
/// <param name="plainText">string to be encrypted</param>
/// <param name="IV">initialization vector to be used by crypto algorithm</param>
/// <returns></returns>
public byte[] Encrypt(string plainText, byte[] IV)
{
if (rijn == null)
throw new ArgumentNullException("Provider not initialized");
// Check arguments.
if (plainText == null || plainText.Length <= 0)
throw new ArgumentNullException("plainText cannot be null or empty");
if (IV == null || IV.Length <= 0)
throw new ArgumentNullException("IV cannot be null or empty");
byte[] encrypted;
// Create a decrytor to perform the stream transform.
using (ICryptoTransform encryptor = rijn.CreateEncryptor(rijn.Key, IV))
{
// Create the streams used for encryption.
using (MemoryStream msEncrypt = new MemoryStream())
{
using (CryptoStream csEncrypt = new CryptoStream(msEncrypt, encryptor, CryptoStreamMode.Write))
{
using (StreamWriter swEncrypt = new StreamWriter(csEncrypt))
{
//Write all data to the stream.
swEncrypt.Write(plainText);
}
encrypted = msEncrypt.ToArray();
}
}
}
// Return the encrypted bytes from the memory stream.
return encrypted;
}//end EncryptStringToBytes
/// <summary>
/// Based on https://msdn.Microsoft.com/en-us/library/system.security.cryptography.rijndaelmanaged(v=vs.110).aspx
/// </summary>
/// <param name="cipherText">bytes to be decrypted back to plaintext</param>
/// <param name="IV">initialization vector used to encrypt the bytes</param>
/// <returns></returns>
public string Decrypt(byte[] cipherText, byte[] IV)
{
if (rijn == null)
throw new ArgumentNullException("Provider not initialized");
// Check arguments.
if (cipherText == null || cipherText.Length <= 0)
throw new ArgumentNullException("cipherText cannot be null or empty");
if (IV == null || IV.Length <= 0)
throw new ArgumentNullException("IV cannot be null or empty");
// Declare the string used to hold the decrypted text.
string plaintext = null;
// Create a decrytor to perform the stream transform.
using (ICryptoTransform decryptor = rijn.CreateDecryptor(rijn.Key, IV))
{
// Create the streams used for decryption.
using (MemoryStream msDecrypt = new MemoryStream(cipherText))
{
using (CryptoStream csDecrypt = new CryptoStream(msDecrypt, decryptor, CryptoStreamMode.Read))
{
using (StreamReader srDecrypt = new StreamReader(csDecrypt))
{
// Read the decrypted bytes from the decrypting stream and place them in a string.
plaintext = srDecrypt.ReadToEnd();
}
}
}
}
return plaintext;
}//end DecryptStringFromBytes
/// <summary>
/// Generates a unique encryption vector using RijndaelManaged.GenerateIV() method
/// </summary>
/// <returns></returns>
public byte[] GenerateEncryptionVector()
{
if (rijn == null)
throw new ArgumentNullException("Provider not initialized");
//Generate a Vector
rijn.GenerateIV();
return rijn.IV;
}//end GenerateEncryptionVector
/// <summary>
/// Based on https://stackoverflow.com/a/1344255
/// Generate a unique string given number of bytes required.
/// This string can be used as IV. IV byte size should be equal to cipher-block byte size.
/// Allows seeing IV in plaintext so it can be passed along a url or some message.
/// </summary>
/// <param name="numBytes"></param>
/// <returns></returns>
public static string GetUniqueString(int numBytes)
{
char[] chars = new char[62];
chars = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890".ToCharArray();
byte[] data = new byte[1];
using (RNGCryptoServiceProvider crypto = new RNGCryptoServiceProvider())
{
data = new byte[numBytes];
crypto.GetBytes(data);
}
StringBuilder result = new StringBuilder(numBytes);
foreach (byte b in data)
{
result.Append(chars[b % (chars.Length)]);
}
return result.ToString();
}//end GetUniqueKey()
/// <summary>
/// Converts a string to byte array. Useful when converting back hex string which was originally formed from bytes.
/// </summary>
/// <param name="hex"></param>
/// <returns></returns>
public static byte[] StringToByteArray(String hex)
{
int NumberChars = hex.Length;
byte[] bytes = new byte[NumberChars / 2];
for (int i = 0; i < NumberChars; i += 2)
bytes[i / 2] = Convert.ToByte(hex.Substring(i, 2), 16);
return bytes;
}//end StringToByteArray
/// <summary>
/// Dispose RijndaelManaged object initialized in the constructor
/// </summary>
public void Dispose()
{
if (rijn != null)
rijn.Dispose();
}//end Dispose()
}//end class
et..
Voici l'échantillon de test:
class Program
{
string key;
static void Main(string[] args)
{
Program p = new Program();
//get 16 byte key (just demo - typically you will have a predetermined key)
p.key = AnotherAES.GetUniqueString(16);
string plainText = "Hello World!";
//encrypt
string hex = p.Encrypt(plainText);
//decrypt
string roundTrip = p.Decrypt(hex);
Console.WriteLine("Round Trip: {0}", roundTrip);
}
string Encrypt(string plainText)
{
Console.WriteLine("\nSending (encrypt side)...");
Console.WriteLine("Plain Text: {0}", plainText);
Console.WriteLine("Key: {0}", key);
string hex = string.Empty;
string ivString = AnotherAES.GetUniqueString(16);
Console.WriteLine("IV: {0}", ivString);
using (AnotherAES aes = new AnotherAES(key))
{
//encrypting side
byte[] IV = Encoding.UTF8.GetBytes(ivString);
//get encrypted bytes (IV bytes prepended to cipher bytes)
byte[] encryptedBytes = aes.Encrypt(plainText, IV);
byte[] encryptedBytesWithIV = IV.Concat(encryptedBytes).ToArray();
//get hex string to send with url
//this hex has both IV and ciphertext
hex = BitConverter.ToString(encryptedBytesWithIV).Replace("-", "");
Console.WriteLine("sending hex: {0}", hex);
}
return hex;
}
string Decrypt(string hex)
{
Console.WriteLine("\nReceiving (decrypt side)...");
Console.WriteLine("received hex: {0}", hex);
string roundTrip = string.Empty;
Console.WriteLine("Key " + key);
using (AnotherAES aes = new AnotherAES(key))
{
//get bytes from url
byte[] encryptedBytesWithIV = AnotherAES.StringToByteArray(hex);
byte[] IV = encryptedBytesWithIV.Take(16).ToArray();
Console.WriteLine("IV: {0}", System.Text.Encoding.Default.GetString(IV));
byte[] cipher = encryptedBytesWithIV.Skip(16).ToArray();
roundTrip = aes.Decrypt(cipher, IV);
}
return roundTrip;
}
}