web-dev-qa-db-fra.com

Trouver le centre de gravité d'un polygone?

Pour obtenir le centre, j'ai essayé, pour chaque sommet, d'ajouter au total, de diviser par le nombre de sommets.

J'ai également essayé de trouver le plus haut, le plus bas -> obtenir le milieu ... trouver le plus à gauche, le plus à droite, trouver le milieu.

Les deux n'ont pas renvoyé le centre parfait parce que je compte sur le centre pour mettre à l'échelle un polygone.

Je veux redimensionner mes polygones, donc je peux mettre une bordure autour d'eux.

Quelle est la meilleure façon de trouver le centre de gravité d'un polygone étant donné que le polygone peut être concave, convexe et avoir de nombreux côtés de différentes longueurs?

43
jmasterx

La formule est donnée ici .

Pour ceux qui ont du mal à comprendre la notation sigma dans ces formules, voici du code C++ montrant comment faire le calcul:

#include <iostream>

struct Point2D
{
    double x;
    double y;
};

Point2D compute2DPolygonCentroid(const Point2D* vertices, int vertexCount)
{
    Point2D centroid = {0, 0};
    double signedArea = 0.0;
    double x0 = 0.0; // Current vertex X
    double y0 = 0.0; // Current vertex Y
    double x1 = 0.0; // Next vertex X
    double y1 = 0.0; // Next vertex Y
    double a = 0.0;  // Partial signed area

    // For all vertices except last
    int i=0;
    for (i=0; i<vertexCount-1; ++i)
    {
        x0 = vertices[i].x;
        y0 = vertices[i].y;
        x1 = vertices[i+1].x;
        y1 = vertices[i+1].y;
        a = x0*y1 - x1*y0;
        signedArea += a;
        centroid.x += (x0 + x1)*a;
        centroid.y += (y0 + y1)*a;
    }

    // Do last vertex separately to avoid performing an expensive
    // modulus operation in each iteration.
    x0 = vertices[i].x;
    y0 = vertices[i].y;
    x1 = vertices[0].x;
    y1 = vertices[0].y;
    a = x0*y1 - x1*y0;
    signedArea += a;
    centroid.x += (x0 + x1)*a;
    centroid.y += (y0 + y1)*a;

    signedArea *= 0.5;
    centroid.x /= (6.0*signedArea);
    centroid.y /= (6.0*signedArea);

    return centroid;
}

int main()
{
    Point2D polygon[] = {{0.0,0.0}, {0.0,10.0}, {10.0,10.0}, {10.0,0.0}};
    size_t vertexCount = sizeof(polygon) / sizeof(polygon[0]);
    Point2D centroid = compute2DPolygonCentroid(polygon, vertexCount);
    std::cout << "Centroid is (" << centroid.x << ", " << centroid.y << ")\n";
}

Je n'ai testé cela que pour un polygone carré dans le quadrant supérieur droit x/y.


Si cela ne vous dérange pas d'effectuer deux opérations de module supplémentaire (potentiellement coûteuses) à chaque itération, vous pouvez simplifier la précédente compute2DPolygonCentroid fonctionne comme suit:

Point2D compute2DPolygonCentroid(const Point2D* vertices, int vertexCount)
{
    Point2D centroid = {0, 0};
    double signedArea = 0.0;
    double x0 = 0.0; // Current vertex X
    double y0 = 0.0; // Current vertex Y
    double x1 = 0.0; // Next vertex X
    double y1 = 0.0; // Next vertex Y
    double a = 0.0;  // Partial signed area

    // For all vertices
    int i=0;
    for (i=0; i<vertexCount; ++i)
    {
        x0 = vertices[i].x;
        y0 = vertices[i].y;
        x1 = vertices[(i+1) % vertexCount].x;
        y1 = vertices[(i+1) % vertexCount].y;
        a = x0*y1 - x1*y0;
        signedArea += a;
        centroid.x += (x0 + x1)*a;
        centroid.y += (y0 + y1)*a;
    }

    signedArea *= 0.5;
    centroid.x /= (6.0*signedArea);
    centroid.y /= (6.0*signedArea);

    return centroid;
}
65
Emile Cormier

Le centroïde peut être calculé comme la somme pondérée des centroïdes des triangles auxquels il peut être partitionné.

Voici le code source C pour un tel algorithme:

/*
    Written by Joseph O'Rourke
    [email protected]
    October 27, 1995

    Computes the centroid (center of gravity) of an arbitrary
    simple polygon via a weighted sum of signed triangle areas,
    weighted by the centroid of each triangle.
    Reads x,y coordinates from stdin.  
    NB: Assumes points are entered in ccw order!  
    E.g., input for square:
        0   0
        10  0
        10  10
        0   10
    This solves Exercise 12, p.47, of my text,
    Computational Geometry in C.  See the book for an explanation
    of why this works. Follow links from
        http://cs.smith.edu/~orourke/

*/
#include <stdio.h>

#define DIM     2               /* Dimension of points */
typedef int     tPointi[DIM];   /* type integer point */
typedef double  tPointd[DIM];   /* type double point */

#define PMAX    1000            /* Max # of pts in polygon */
typedef tPointi tPolygoni[PMAX];/* type integer polygon */

int     Area2( tPointi a, tPointi b, tPointi c );
void    FindCG( int n, tPolygoni P, tPointd CG );
int     ReadPoints( tPolygoni P );
void    Centroid3( tPointi p1, tPointi p2, tPointi p3, tPointi c );
void    PrintPoint( tPointd p );

int main()
{
    int n;
    tPolygoni   P;
    tPointd CG;

    n = ReadPoints( P );
    FindCG( n, P ,CG);
    printf("The cg is ");
    PrintPoint( CG );
}

/* 
    Returns twice the signed area of the triangle determined by a,b,c,
    positive if a,b,c are oriented ccw, and negative if cw.
*/
int Area2( tPointi a, tPointi b, tPointi c )
{
    return
        (b[0] - a[0]) * (c[1] - a[1]) -
        (c[0] - a[0]) * (b[1] - a[1]);
}

/*      
    Returns the cg in CG.  Computes the weighted sum of
    each triangle's area times its centroid.  Twice area
    and three times centroid is used to avoid division
    until the last moment.
*/
void FindCG( int n, tPolygoni P, tPointd CG )
{
    int     i;
    double  A2, Areasum2 = 0;        /* Partial area sum */    
    tPointi Cent3;

    CG[0] = 0;
    CG[1] = 0;
    for (i = 1; i < n-1; i++) {
        Centroid3( P[0], P[i], P[i+1], Cent3 );
        A2 =  Area2( P[0], P[i], P[i+1]);
        CG[0] += A2 * Cent3[0];
        CG[1] += A2 * Cent3[1];
        Areasum2 += A2;
    }
    CG[0] /= 3 * Areasum2;
    CG[1] /= 3 * Areasum2;
    return;
}

/*
    Returns three times the centroid.  The factor of 3 is
    left in to permit division to be avoided until later.
*/
void Centroid3( tPointi p1, tPointi p2, tPointi p3, tPointi c )
{
    c[0] = p1[0] + p2[0] + p3[0];
    c[1] = p1[1] + p2[1] + p3[1];
    return;
}

void PrintPoint( tPointd p )
{
    int i;

    putchar('(');
    for ( i=0; i<DIM; i++) {
        printf("%f",p[i]);
        if (i != DIM - 1) putchar(',');
    }
    putchar(')');
    putchar('\n');
}

/*
    Reads in the coordinates of the vertices of a polygon from stdin,
    puts them into P, and returns n, the number of vertices.
    The input is assumed to be pairs of whitespace-separated coordinates,
    one pair per line.  The number of points is not part of the input.
*/
int ReadPoints( tPolygoni P )
{
    int n = 0;

    printf("Polygon:\n");
    printf("  i   x   y\n");      
    while ( (n < PMAX) && (scanf("%d %d",&P[n][0],&P[n][1]) != EOF) ) {
        printf("%3d%4d%4d\n", n, P[n][0], P[n][1]);
        ++n;
    }
    if (n < PMAX)
        printf("n = %3d vertices read\n",n);
    else
        printf("Error in ReadPoints:\too many points; max is %d\n", PMAX);
    putchar('\n');

    return  n;
}

Il y a un article polygon centroid sur le wiki CGAFaq (comp.graphics.algorithms FAQ) qui l'explique.

10
Firas Assaad
boost::geometry::centroid(your_polygon, p);
7
Arlen

Divisez-le en triangles, trouvez l'aire et le centroïde de chacun, puis calculez la moyenne de tous les centroïdes partiels en utilisant les aires partielles comme poids. Avec concavité, certaines zones pourraient être négatives.

0
Ben Voigt