Par exemple:
int a = 12;
cout << typeof(a) << endl;
Production attendue:
int
Mise à jour C++ 11 à une question très ancienne: Imprimez le type de variable en C++.
La réponse acceptée (et bonne) consiste à utiliser typeid(a).name()
, où a
est un nom de variable.
Maintenant, en C++ 11, nous avons decltype(x)
, qui peut transformer une expression en un type. Et decltype()
vient avec son propre ensemble de règles très intéressantes. Par exemple, decltype(a)
et decltype((a))
seront généralement de types différents (et pour des raisons bonnes et compréhensibles une fois que ces raisons sont exposées).
Notre fidèle typeid(a).name()
nous aidera-t-il à explorer ce nouveau monde?
Non.
Mais l'outil qui va n'est pas si compliqué. Et c'est cet outil que j'utilise comme réponse à cette question. Je vais comparer et contraster ce nouvel outil avec typeid(a).name()
. Et ce nouvel outil est en fait construit sur typeid(a).name()
.
La question fondamentale:
typeid(a).name()
jette les qualificatifs cv, les références et lvalue/rvalue-ness. Par exemple:
const int ci = 0;
std::cout << typeid(ci).name() << '\n';
Pour moi les sorties:
i
et je devine sur les sorties MSVC:
int
C'est à dire. le const
est parti. Ce n’est pas un problème de qualité d’implémentation. La norme impose ce comportement.
Ce que je recommande ci-dessous est:
template <typename T> std::string type_name();
qui serait utilisé comme ceci:
const int ci = 0;
std::cout << type_name<decltype(ci)>() << '\n';
et pour moi sorties:
int const
<disclaimer>
Je n'ai pas testé cela sur MSVC. </disclaimer>
Mais les commentaires de ceux qui le font sont les bienvenus.
La solution C++ 11
J'utilise __cxa_demangle
pour les plates-formes non-MSVC comme recommandé par ipapadop dans sa réponse aux types de démêlage. Mais sur MSVC, je fais confiance à typeid
pour démêler les noms (non testés). Et ce noyau s'articule autour de tests simples qui détectent, restaurent et signalent les qualificatifs cv et les références au type d'entrée.
#include <type_traits>
#include <typeinfo>
#ifndef _MSC_VER
# include <cxxabi.h>
#endif
#include <memory>
#include <string>
#include <cstdlib>
template <class T>
std::string
type_name()
{
typedef typename std::remove_reference<T>::type TR;
std::unique_ptr<char, void(*)(void*)> own
(
#ifndef _MSC_VER
abi::__cxa_demangle(typeid(TR).name(), nullptr,
nullptr, nullptr),
#else
nullptr,
#endif
std::free
);
std::string r = own != nullptr ? own.get() : typeid(TR).name();
if (std::is_const<TR>::value)
r += " const";
if (std::is_volatile<TR>::value)
r += " volatile";
if (std::is_lvalue_reference<T>::value)
r += "&";
else if (std::is_rvalue_reference<T>::value)
r += "&&";
return r;
}
Les résultats
Avec cette solution, je peux faire ceci:
int& foo_lref();
int&& foo_rref();
int foo_value();
int
main()
{
int i = 0;
const int ci = 0;
std::cout << "decltype(i) is " << type_name<decltype(i)>() << '\n';
std::cout << "decltype((i)) is " << type_name<decltype((i))>() << '\n';
std::cout << "decltype(ci) is " << type_name<decltype(ci)>() << '\n';
std::cout << "decltype((ci)) is " << type_name<decltype((ci))>() << '\n';
std::cout << "decltype(static_cast<int&>(i)) is " << type_name<decltype(static_cast<int&>(i))>() << '\n';
std::cout << "decltype(static_cast<int&&>(i)) is " << type_name<decltype(static_cast<int&&>(i))>() << '\n';
std::cout << "decltype(static_cast<int>(i)) is " << type_name<decltype(static_cast<int>(i))>() << '\n';
std::cout << "decltype(foo_lref()) is " << type_name<decltype(foo_lref())>() << '\n';
std::cout << "decltype(foo_rref()) is " << type_name<decltype(foo_rref())>() << '\n';
std::cout << "decltype(foo_value()) is " << type_name<decltype(foo_value())>() << '\n';
}
et le résultat est:
decltype(i) is int
decltype((i)) is int&
decltype(ci) is int const
decltype((ci)) is int const&
decltype(static_cast<int&>(i)) is int&
decltype(static_cast<int&&>(i)) is int&&
decltype(static_cast<int>(i)) is int
decltype(foo_lref()) is int&
decltype(foo_rref()) is int&&
decltype(foo_value()) is int
Notez (par exemple) la différence entre decltype(i)
et decltype((i))
. Le premier est le type de la déclaration de i
. Ce dernier est le "type" de l'expression i
. (les expressions n'ont jamais de type référence, mais comme convention decltype
représente les expressions lvalue avec des références lvalue).
Cet outil est donc un excellent véhicule pour apprendre à connaître decltype
, en plus d'explorer et de déboguer votre propre code.
En revanche, si je construisais ceci uniquement sur typeid(a).name()
, sans rajouter de qualificatif CV ou de références perdus, le résultat serait:
decltype(i) is int
decltype((i)) is int
decltype(ci) is int
decltype((ci)) is int
decltype(static_cast<int&>(i)) is int
decltype(static_cast<int&&>(i)) is int
decltype(static_cast<int>(i)) is int
decltype(foo_lref()) is int
decltype(foo_rref()) is int
decltype(foo_value()) is int
C'est à dire. Chaque référence et qualificatif CV est supprimé.
Mise à jour C++ 14
Juste quand vous pensez avoir une solution à un problème résolu, quelqu'un vient toujours de nulle part et vous montre une bien meilleure façon. :-)
Cette réponse de Jamboree montre comment obtenir le nom du type en C++ 14 lors de la compilation. C'est une solution brillante pour plusieurs raisons:
du Jamboreeréponse ne précise pas tout pour VS, et je peaufine un peu son code. Mais puisque cette réponse a suscité beaucoup de points de vue, prenez un peu de temps pour aller là-bas et inviter sa réponse, sans laquelle cette mise à jour n'aurait jamais eu lieu.
#include <cstddef>
#include <stdexcept>
#include <cstring>
#include <ostream>
#ifndef _MSC_VER
# if __cplusplus < 201103
# define CONSTEXPR11_TN
# define CONSTEXPR14_TN
# define NOEXCEPT_TN
# Elif __cplusplus < 201402
# define CONSTEXPR11_TN constexpr
# define CONSTEXPR14_TN
# define NOEXCEPT_TN noexcept
# else
# define CONSTEXPR11_TN constexpr
# define CONSTEXPR14_TN constexpr
# define NOEXCEPT_TN noexcept
# endif
#else // _MSC_VER
# if _MSC_VER < 1900
# define CONSTEXPR11_TN
# define CONSTEXPR14_TN
# define NOEXCEPT_TN
# Elif _MSC_VER < 2000
# define CONSTEXPR11_TN constexpr
# define CONSTEXPR14_TN
# define NOEXCEPT_TN noexcept
# else
# define CONSTEXPR11_TN constexpr
# define CONSTEXPR14_TN constexpr
# define NOEXCEPT_TN noexcept
# endif
#endif // _MSC_VER
class static_string
{
const char* const p_;
const std::size_t sz_;
public:
typedef const char* const_iterator;
template <std::size_t N>
CONSTEXPR11_TN static_string(const char(&a)[N]) NOEXCEPT_TN
: p_(a)
, sz_(N-1)
{}
CONSTEXPR11_TN static_string(const char* p, std::size_t N) NOEXCEPT_TN
: p_(p)
, sz_(N)
{}
CONSTEXPR11_TN const char* data() const NOEXCEPT_TN {return p_;}
CONSTEXPR11_TN std::size_t size() const NOEXCEPT_TN {return sz_;}
CONSTEXPR11_TN const_iterator begin() const NOEXCEPT_TN {return p_;}
CONSTEXPR11_TN const_iterator end() const NOEXCEPT_TN {return p_ + sz_;}
CONSTEXPR11_TN char operator[](std::size_t n) const
{
return n < sz_ ? p_[n] : throw std::out_of_range("static_string");
}
};
inline
std::ostream&
operator<<(std::ostream& os, static_string const& s)
{
return os.write(s.data(), s.size());
}
template <class T>
CONSTEXPR14_TN
static_string
type_name()
{
#ifdef __clang__
static_string p = __PRETTY_FUNCTION__;
return static_string(p.data() + 31, p.size() - 31 - 1);
#Elif defined(__GNUC__)
static_string p = __PRETTY_FUNCTION__;
# if __cplusplus < 201402
return static_string(p.data() + 36, p.size() - 36 - 1);
# else
return static_string(p.data() + 46, p.size() - 46 - 1);
# endif
#Elif defined(_MSC_VER)
static_string p = __FUNCSIG__;
return static_string(p.data() + 38, p.size() - 38 - 7);
#endif
}
Ce code sera automatiquement annulé sur la constexpr
si vous êtes toujours bloqué dans l'ancien C++ 11. Et si vous peignez sur le mur de la grotte avec C++ 98/03, la noexcept
est également sacrifiée.
Mise à jour C++ 17
Dans les commentaires ci-dessous, Lyberta indique que le nouveau std::string_view
peut remplacer static_string
:
template <class T>
constexpr
std::string_view
type_name()
{
using namespace std;
#ifdef __clang__
string_view p = __PRETTY_FUNCTION__;
return string_view(p.data() + 34, p.size() - 34 - 1);
#Elif defined(__GNUC__)
string_view p = __PRETTY_FUNCTION__;
# if __cplusplus < 201402
return string_view(p.data() + 36, p.size() - 36 - 1);
# else
return string_view(p.data() + 49, p.find(';', 49) - 49);
# endif
#Elif defined(_MSC_VER)
string_view p = __FUNCSIG__;
return string_view(p.data() + 84, p.size() - 84 - 7);
#endif
}
J'ai mis à jour les constantes pour VS grâce au très joli travail de détective de Jive Dadson dans les commentaires ci-dessous.
Assurez-vous de vérifier cette réécriture ci-dessous qui élimine les nombres magiques illisibles dans ma dernière formulation.
Essayer:
#include <typeinfo>
// …
std::cout << typeid(a).name() << '\n';
Vous devrez peut-être activer RTTI dans les options de votre compilateur pour que cela fonctionne. De plus, le résultat dépend du compilateur. Il peut s’agir d’un nom de type brut ou d’un symbole malin ou de tout autre élément intermédiaire.
Très moche mais fait l’astuce si vous ne voulez que les informations de compilation (par exemple pour le débogage):
auto testVar = std::make_Tuple(1, 1.0, "abc");
decltype(testVar)::foo= 1;
Résultats:
Compilation finished with errors:
source.cpp: In function 'int main()':
source.cpp:5:19: error: 'foo' is not a member of 'std::Tuple<int, double, const char*>'
N'oubliez pas d'inclure <typeinfo>
Je crois que vous faites référence à l'identification de type à l'exécution. Vous pouvez atteindre ce qui précède en faisant.
#include <iostream>
#include <typeinfo>
using namespace std;
int main() {
int i;
cout << typeid(i).name();
return 0;
}
Notez que les noms générés par la fonctionnalité RTTI de C++ sont not portable. Par exemple, la classe
MyNamespace::CMyContainer<int, test_MyNamespace::CMyObject>
aura les noms suivants:
// MSVC 2003:
class MyNamespace::CMyContainer[int,class test_MyNamespace::CMyObject]
// G++ 4.2:
N8MyNamespace8CMyContainerIiN13test_MyNamespace9CMyObjectEEE
Vous ne pouvez donc pas utiliser ces informations pour la sérialisation. Mais quand même, la propriété typeid (a) .name () peut toujours être utilisée à des fins de log/debug
Vous pouvez utiliser des modèles.
template <typename T> const char* typeof(T&) { return "unknown"; } // default
template<> const char* typeof(int&) { return "int"; }
template<> const char* typeof(float&) { return "float"; }
Dans l'exemple ci-dessus, lorsque le type ne correspond pas, il affichera "inconnu".
Comme mentionné, typeid().name()
peut renvoyer un nom mutilé. Dans GCC (et certains autres compilateurs), vous pouvez le contourner avec le code suivant:
#include <cxxabi.h>
#include <iostream>
#include <typeinfo>
#include <cstdlib>
namespace some_namespace { namespace another_namespace {
class my_class { };
} }
int main() {
typedef some_namespace::another_namespace::my_class my_type;
// mangled
std::cout << typeid(my_type).name() << std::endl;
// unmangled
int status = 0;
char* demangled = abi::__cxa_demangle(typeid(my_type).name(), 0, 0, &status);
switch (status) {
case -1: {
// could not allocate memory
std::cout << "Could not allocate memory" << std::endl;
return -1;
} break;
case -2: {
// invalid name under the C++ ABI mangling rules
std::cout << "Invalid name" << std::endl;
return -1;
} break;
case -3: {
// invalid argument
std::cout << "Invalid argument to demangle()" << std::endl;
return -1;
} break;
}
std::cout << demangled << std::endl;
free(demangled);
return 0;
}
Vous pouvez utiliser une classe de traits pour cela. Quelque chose comme:
#include <iostream>
using namespace std;
template <typename T> class type_name {
public:
static const char *name;
};
#define DECLARE_TYPE_NAME(x) template<> const char *type_name<x>::name = #x;
#define GET_TYPE_NAME(x) (type_name<typeof(x)>::name)
DECLARE_TYPE_NAME(int);
int main()
{
int a = 12;
cout << GET_TYPE_NAME(a) << endl;
}
La DECLARE_TYPE_NAME
define existe pour vous faciliter la tâche en déclarant cette classe de traits pour tous les types dont vous avez besoin.
Cela pourrait être plus utile que les solutions impliquant typeid
parce que vous obtenez le contrôle de la sortie. Par exemple, utiliser typeid
pour long long
sur mon compilateur donne "x".
En C++ 11, nous avons decltype. C++ standard ne permet pas d’afficher le type exact de variable déclarée à l’aide de decltype. Nous pouvons utiliser boost typeindex i.e type_id_with_cvr
(cvr signifie const, volatile, reference) pour imprimer le type comme ci-dessous.
#include <iostream>
#include <boost/type_index.hpp>
using namespace std;
using boost::typeindex::type_id_with_cvr;
int main() {
int i = 0;
const int ci = 0;
cout << "decltype(i) is " << type_id_with_cvr<decltype(i)>().pretty_name() << '\n';
cout << "decltype((i)) is " << type_id_with_cvr<decltype((i))>().pretty_name() << '\n';
cout << "decltype(ci) is " << type_id_with_cvr<decltype(ci)>().pretty_name() << '\n';
cout << "decltype((ci)) is " << type_id_with_cvr<decltype((ci))>().pretty_name() << '\n';
cout << "decltype(std::move(i)) is " << type_id_with_cvr<decltype(std::move(i))>().pretty_name() << '\n';
cout << "decltype(std::static_cast<int&&>(i)) is " << type_id_with_cvr<decltype(static_cast<int&&>(i))>().pretty_name() << '\n';
return 0;
}
Une solution plus générique sans surcharge de fonctions que la précédente:
template<typename T>
std::string TypeOf(T){
std::string Type="unknown";
if(std::is_same<T,int>::value) Type="int";
if(std::is_same<T,std::string>::value) Type="String";
if(std::is_same<T,MyClass>::value) Type="MyClass";
return Type;}
Ici, MyClass est une classe définie par l'utilisateur. D'autres conditions peuvent également être ajoutées ici.
Exemple:
#include <iostream>
class MyClass{};
template<typename T>
std::string TypeOf(T){
std::string Type="unknown";
if(std::is_same<T,int>::value) Type="int";
if(std::is_same<T,std::string>::value) Type="String";
if(std::is_same<T,MyClass>::value) Type="MyClass";
return Type;}
int main(){;
int a=0;
std::string s="";
MyClass my;
std::cout<<TypeOf(a)<<std::endl;
std::cout<<TypeOf(s)<<std::endl;
std::cout<<TypeOf(my)<<std::endl;
return 0;}
Sortie:
int
String
MyClass
Selon la solution de Howard , si vous ne voulez pas le nombre magique, je pense que c'est le bon moyen de représenter et semble intuitif:
template <typename T>
constexpr auto type_name()
{
std::string_view name, prefix, suffix;
#ifdef __clang__
name = __PRETTY_FUNCTION__;
prefix = "auto type_name() [T = ";
suffix = "]";
#Elif defined(__GNUC__)
name = __PRETTY_FUNCTION__;
prefix = "constexpr auto type_name() [with T = ";
suffix = "]";
#Elif defined(_MSC_VER)
name = __FUNCSIG__;
prefix = "auto __cdecl type_name<";
suffix = ">(void)";
#endif
name.remove_prefix(prefix.size());
name.remove_suffix(suffix.size());
return name;
}
Les autres réponses impliquant RTTI (typeid) sont probablement ce que vous voulez, à condition que:
L'alternative, (semblable à la réponse de Greg Hewgill), consiste à construire un tableau de traits à la compilation.
template <typename T> struct type_as_string;
// declare your Wibble type (probably with definition of Wibble)
template <>
struct type_as_string<Wibble>
{
static const char* const value = "Wibble";
};
Sachez que si vous encapsulez les déclarations dans une macro, vous aurez des difficultés à déclarer les noms des types de modèles prenant plusieurs paramètres (par exemple, std :: map), en raison de la virgule.
Pour accéder au nom du type d'une variable, il vous suffit de
template <typename T>
const char* get_type_as_string(const T&)
{
return type_as_string<T>::value;
}
Vous pouvez également utiliser c ++ filt avec l'option -t (type) pour démêler le nom du type:
#include <iostream>
#include <typeinfo>
#include <string>
using namespace std;
int main() {
auto x = 1;
string my_type = typeid(x).name();
system(("echo " + my_type + " | c++filt -t").c_str());
return 0;
}
Testé sur Linux uniquement.
J'aime la méthode de Nick. Voici un formulaire complet (pour tous les types de données de base):
template <typename T> const char* typeof(T&) { return "unknown"; } // default
template<> const char* typeof(int&) { return "int"; }
template<> const char* typeof(short&) { return "short"; }
template<> const char* typeof(long&) { return "long"; }
template<> const char* typeof(unsigned&) { return "unsigned"; }
template<> const char* typeof(unsigned short&) { return "unsigned short"; }
template<> const char* typeof(unsigned long&) { return "unsigned long"; }
template<> const char* typeof(float&) { return "float"; }
template<> const char* typeof(double&) { return "double"; }
template<> const char* typeof(long double&) { return "long double"; }
template<> const char* typeof(std::string&) { return "String"; }
template<> const char* typeof(char&) { return "char"; }
template<> const char* typeof(signed char&) { return "signed char"; }
template<> const char* typeof(unsigned char&) { return "unsigned char"; }
template<> const char* typeof(char*&) { return "char*"; }
template<> const char* typeof(signed char*&) { return "signed char*"; }
template<> const char* typeof(unsigned char*&) { return "unsigned char*"; }
Alors que je contestais, j'ai décidé de vérifier jusqu'où on pouvait aller avec une supercherie de modèles indépendante de la plate-forme (espérons-le).
Les noms sont assemblés complètement lors de la compilation. (Ce qui signifie que typeid(T).name()
ne peut pas être utilisé, vous devez donc explicitement fournir des noms pour les types non composés. Sinon, des espaces réservés seront affichés à la place.)
Exemple d'utilisation:
TYPE_NAME(int)
TYPE_NAME(void)
// You probably should list all primitive types here.
TYPE_NAME(std::string)
int main()
{
// A simple case
std::cout << type_name<void(*)(int)> << '\n';
// -> `void (*)(int)`
// Ugly mess case
// Note that compiler removes cv-qualifiers from parameters and replaces arrays with pointers.
std::cout << type_name<void (std::string::*(int[3],const int, void (*)(std::string)))(volatile int*const*)> << '\n';
// -> `void (std::string::*(int *,int,void (*)(std::string)))(volatile int *const*)`
// A case with undefined types
// If a type wasn't TYPE_NAME'd, it's replaced by a placeholder, one of `class?`, `union?`, `enum?` or `??`.
std::cout << type_name<std::ostream (*)(int, short)> << '\n';
// -> `class? (*)(int,??)`
// With appropriate TYPE_NAME's, the output would be `std::string (*)(int,short)`.
}
Code:
#include <type_traits>
#include <utility>
static constexpr std::size_t max_str_lit_len = 256;
template <std::size_t I, std::size_t N> constexpr char sl_at(const char (&str)[N])
{
if constexpr(I < N)
return str[I];
else
return '\0';
}
constexpr std::size_t sl_len(const char *str)
{
for (std::size_t i = 0; i < max_str_lit_len; i++)
if (str[i] == '\0')
return i;
return 0;
}
template <char ...C> struct str_lit
{
static constexpr char value[] {C..., '\0'};
static constexpr int size = sl_len(value);
template <typename F, typename ...P> struct concat_impl {using type = typename concat_impl<F>::type::template concat_impl<P...>::type;};
template <char ...CC> struct concat_impl<str_lit<CC...>> {using type = str_lit<C..., CC...>;};
template <typename ...P> using concat = typename concat_impl<P...>::type;
};
template <typename, const char *> struct trim_str_lit_impl;
template <std::size_t ...I, const char *S> struct trim_str_lit_impl<std::index_sequence<I...>, S>
{
using type = str_lit<S[I]...>;
};
template <std::size_t N, const char *S> using trim_str_lit = typename trim_str_lit_impl<std::make_index_sequence<N>, S>::type;
#define STR_LIT(str) ::trim_str_lit<::sl_len(str), ::str_lit<STR_TO_VA(str)>::value>
#define STR_TO_VA(str) STR_TO_VA_16(str,0),STR_TO_VA_16(str,16),STR_TO_VA_16(str,32),STR_TO_VA_16(str,48)
#define STR_TO_VA_16(str,off) STR_TO_VA_4(str,0+off),STR_TO_VA_4(str,4+off),STR_TO_VA_4(str,8+off),STR_TO_VA_4(str,12+off)
#define STR_TO_VA_4(str,off) ::sl_at<off+0>(str),::sl_at<off+1>(str),::sl_at<off+2>(str),::sl_at<off+3>(str)
template <char ...C> constexpr str_lit<C...> make_str_lit(str_lit<C...>) {return {};}
template <std::size_t N> constexpr auto make_str_lit(const char (&str)[N])
{
return trim_str_lit<sl_len((const char (&)[N])str), str>{};
}
template <std::size_t A, std::size_t B> struct cexpr_pow {static constexpr std::size_t value = A * cexpr_pow<A,B-1>::value;};
template <std::size_t A> struct cexpr_pow<A,0> {static constexpr std::size_t value = 1;};
template <std::size_t N, std::size_t X, typename = std::make_index_sequence<X>> struct num_to_str_lit_impl;
template <std::size_t N, std::size_t X, std::size_t ...Seq> struct num_to_str_lit_impl<N, X, std::index_sequence<Seq...>>
{
static constexpr auto func()
{
if constexpr (N >= cexpr_pow<10,X>::value)
return num_to_str_lit_impl<N, X+1>::func();
else
return str_lit<(N / cexpr_pow<10,X-1-Seq>::value % 10 + '0')...>{};
}
};
template <std::size_t N> using num_to_str_lit = decltype(num_to_str_lit_impl<N,1>::func());
using spa = str_lit<' '>;
using lpa = str_lit<'('>;
using rpa = str_lit<')'>;
using lbr = str_lit<'['>;
using rbr = str_lit<']'>;
using ast = str_lit<'*'>;
using amp = str_lit<'&'>;
using con = str_lit<'c','o','n','s','t'>;
using vol = str_lit<'v','o','l','a','t','i','l','e'>;
using con_vol = con::concat<spa, vol>;
using nsp = str_lit<':',':'>;
using com = str_lit<','>;
using unk = str_lit<'?','?'>;
using c_cla = str_lit<'c','l','a','s','s','?'>;
using c_uni = str_lit<'u','n','i','o','n','?'>;
using c_enu = str_lit<'e','n','u','m','?'>;
template <typename T> inline constexpr bool ptr_or_ref = std::is_pointer_v<T> || std::is_reference_v<T> || std::is_member_pointer_v<T>;
template <typename T> inline constexpr bool func_or_arr = std::is_function_v<T> || std::is_array_v<T>;
template <typename T> struct primitive_type_name {using value = unk;};
template <typename T, typename = std::enable_if_t<std::is_class_v<T>>> using enable_if_class = T;
template <typename T, typename = std::enable_if_t<std::is_union_v<T>>> using enable_if_union = T;
template <typename T, typename = std::enable_if_t<std::is_enum_v <T>>> using enable_if_enum = T;
template <typename T> struct primitive_type_name<enable_if_class<T>> {using value = c_cla;};
template <typename T> struct primitive_type_name<enable_if_union<T>> {using value = c_uni;};
template <typename T> struct primitive_type_name<enable_if_enum <T>> {using value = c_enu;};
template <typename T> struct type_name_impl;
template <typename T> using type_name_lit = std::conditional_t<std::is_same_v<typename primitive_type_name<T>::value::template concat<spa>,
typename type_name_impl<T>::l::template concat<typename type_name_impl<T>::r>>,
typename primitive_type_name<T>::value,
typename type_name_impl<T>::l::template concat<typename type_name_impl<T>::r>>;
template <typename T> inline constexpr const char *type_name = type_name_lit<T>::value;
template <typename T, typename = std::enable_if_t<!std::is_const_v<T> && !std::is_volatile_v<T>>> using enable_if_no_cv = T;
template <typename T> struct type_name_impl
{
using l = typename primitive_type_name<T>::value::template concat<spa>;
using r = str_lit<>;
};
template <typename T> struct type_name_impl<const T>
{
using new_T_l = std::conditional_t<type_name_impl<T>::l::size && !ptr_or_ref<T>,
spa::concat<typename type_name_impl<T>::l>,
typename type_name_impl<T>::l>;
using l = std::conditional_t<ptr_or_ref<T>,
typename new_T_l::template concat<con>,
con::concat<new_T_l>>;
using r = typename type_name_impl<T>::r;
};
template <typename T> struct type_name_impl<volatile T>
{
using new_T_l = std::conditional_t<type_name_impl<T>::l::size && !ptr_or_ref<T>,
spa::concat<typename type_name_impl<T>::l>,
typename type_name_impl<T>::l>;
using l = std::conditional_t<ptr_or_ref<T>,
typename new_T_l::template concat<vol>,
vol::concat<new_T_l>>;
using r = typename type_name_impl<T>::r;
};
template <typename T> struct type_name_impl<const volatile T>
{
using new_T_l = std::conditional_t<type_name_impl<T>::l::size && !ptr_or_ref<T>,
spa::concat<typename type_name_impl<T>::l>,
typename type_name_impl<T>::l>;
using l = std::conditional_t<ptr_or_ref<T>,
typename new_T_l::template concat<con_vol>,
con_vol::concat<new_T_l>>;
using r = typename type_name_impl<T>::r;
};
template <typename T> struct type_name_impl<T *>
{
using l = std::conditional_t<func_or_arr<T>,
typename type_name_impl<T>::l::template concat<lpa, ast>,
typename type_name_impl<T>::l::template concat< ast>>;
using r = std::conditional_t<func_or_arr<T>,
rpa::concat<typename type_name_impl<T>::r>,
typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<T &>
{
using l = std::conditional_t<func_or_arr<T>,
typename type_name_impl<T>::l::template concat<lpa, amp>,
typename type_name_impl<T>::l::template concat< amp>>;
using r = std::conditional_t<func_or_arr<T>,
rpa::concat<typename type_name_impl<T>::r>,
typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<T &&>
{
using l = std::conditional_t<func_or_arr<T>,
typename type_name_impl<T>::l::template concat<lpa, amp, amp>,
typename type_name_impl<T>::l::template concat< amp, amp>>;
using r = std::conditional_t<func_or_arr<T>,
rpa::concat<typename type_name_impl<T>::r>,
typename type_name_impl<T>::r>;
};
template <typename T, typename C> struct type_name_impl<T C::*>
{
using l = std::conditional_t<func_or_arr<T>,
typename type_name_impl<T>::l::template concat<lpa, type_name_lit<C>, nsp, ast>,
typename type_name_impl<T>::l::template concat< type_name_lit<C>, nsp, ast>>;
using r = std::conditional_t<func_or_arr<T>,
rpa::concat<typename type_name_impl<T>::r>,
typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<enable_if_no_cv<T[]>>
{
using l = typename type_name_impl<T>::l;
using r = lbr::concat<rbr, typename type_name_impl<T>::r>;
};
template <typename T, std::size_t N> struct type_name_impl<enable_if_no_cv<T[N]>>
{
using l = typename type_name_impl<T>::l;
using r = lbr::concat<num_to_str_lit<N>, rbr, typename type_name_impl<T>::r>;
};
template <typename T> struct type_name_impl<T()>
{
using l = typename type_name_impl<T>::l;
using r = lpa::concat<rpa, typename type_name_impl<T>::r>;
};
template <typename T, typename P1, typename ...P> struct type_name_impl<T(P1, P...)>
{
using l = typename type_name_impl<T>::l;
using r = lpa::concat<type_name_lit<P1>,
com::concat<type_name_lit<P>>..., rpa, typename type_name_impl<T>::r>;
};
#define TYPE_NAME(t) template <> struct primitive_type_name<t> {using value = STR_LIT(#t);};
#include <iostream>
#include <typeinfo>
using namespace std;
#define show_type_name(_t) \
system(("echo " + string(typeid(_t).name()) + " | c++filt -t").c_str())
int main() {
auto a = {"one", "two", "three"};
cout << "Type of a: " << typeid(a).name() << endl;
cout << "Real type of a:\n";
show_type_name(a);
for (auto s : a) {
if (string(s) == "one") {
cout << "Type of s: " << typeid(s).name() << endl;
cout << "Real type of s:\n";
show_type_name(s);
}
cout << s << endl;
}
int i = 5;
cout << "Type of i: " << typeid(i).name() << endl;
cout << "Real type of i:\n";
show_type_name(i);
return 0;
}
Sortie:
Type of a: St16initializer_listIPKcE
Real type of a:
std::initializer_list<char const*>
Type of s: PKc
Real type of s:
char const*
one
two
three
Type of i: i
Real type of i:
int
Comme l'a expliqué Scott Meyers dans Effective Modern C++,
Les appels à
std::type_info::name
ne sont pas assurés de renvoyer un message raisonnable.
La meilleure solution consiste à laisser le compilateur générer un message d'erreur lors de la déduction de type, par exemple:
template<typename T>
class TD;
int main(){
const int theAnswer = 32;
auto x = theAnswer;
auto y = &theAnswer;
TD<decltype(x)> xType;
TD<decltype(y)> yType;
return 0;
}
Le résultat sera quelque chose comme ça, en fonction des compilateurs,
test4.cpp:10:21: error: aggregate ‘TD<int> xType’ has incomplete type and cannot be defined TD<decltype(x)> xType;
test4.cpp:11:21: error: aggregate ‘TD<const int *> yType’ has incomplete type and cannot be defined TD<decltype(y)> yType;
Nous apprenons donc que le type de x
est int
, y
est de type const int*