Plus je lis, plus je deviens confus ... J'aurais pensé qu'il était trivial de trouver une file d'attente mpsc formellement correcte implémentée en c ++.
Chaque fois que je trouve une autre tentative, des recherches plus poussées semblent suggérer qu'il existe des problèmes tels que l'ABA ou d'autres conditions de course subtiles.
Beaucoup parlent de la nécessité d'un ramassage des ordures. C'est quelque chose que je veux éviter.
Existe-t-il une implémentation open source correcte acceptée?
Vous voudrez peut-être vérifier le disruptor; il est disponible en C++ ici: http://lmax-exchange.github.io/disruptor/
Vous pouvez également trouver des explications sur son fonctionnement ici sur stackoverflow Fondamentalement, c'est un tampon circulaire sans verrouillage, optimisé pour le passage de FIFO messages entre les threads dans des slots de taille fixe.
Voici deux implémentations que j'ai trouvées utiles: File d'attente multi-producteur multi-consommateurs sans verrouillage sur Ring Buffer @ NatSys Lab. Blog et
Encore une autre implémentation d'une file d'attente de tableau circulaire sans verrouillage @ CodeProject
REMARQUE: le code ci-dessous est incorrect, je ne le laisse qu'à titre d'exemple à quel point ces choses peuvent être délicates.
Si vous n'aimez pas la complexité de la version google, voici quelque chose de similaire de ma part - c'est beaucoup plus simple, mais je laisse au lecteur un exercice pour le faire fonctionner (cela fait partie d'un projet plus vaste, pas portable pour le moment) . L'idée générale est de maintenir un tampon circulaire pour les données et un petit ensemble de compteurs pour identifier les emplacements pour l'écriture/l'écriture et la lecture/lecture. Étant donné que chaque compteur se trouve dans sa propre ligne de cache et (normalement) chacun n'est mis à jour de manière atomique qu'une seule fois dans la vie d'un message, ils peuvent tous être lus sans aucune synchronisation. Il existe un point de conflit potentiel entre l'écriture de threads dans post_done
, il est requis pour FIFO garantie. Les compteurs (head_, wrtn_, rdng_, tail_) ont été sélectionnés pour garantir l'exactitude et FIFO, donc en baisse FIFO nécessiterait également le changement de compteurs (et cela pourrait être difficile à faire sans sacrifier l'exactitude). Il est possible d'améliorer légèrement les performances pour les scénarios avec un seul consommateur, mais je ne dérangerais pas - vous auriez à annuler il si d'autres cas d'utilisation avec plusieurs lecteurs sont trouvés.
Sur ma machine, la latence ressemble à ce qui suit (percentile à gauche, moyenne dans ce percentile à droite, l'unité est la microseconde, mesurée par rdtsc):
total=1000000 samples, avg=0.24us
50%=0.214us, avg=0.093us
90%=0.23us, avg=0.151us
99%=0.322us, avg=0.159us
99.9%=15.566us, avg=0.173us
Ces résultats sont pour un consommateur d'interrogation unique, c'est-à-dire un thread de travail appelant wheel.read () en boucle serrée et vérifiant s'il n'est pas vide (défilement vers le bas par exemple). Les consommateurs en attente (utilisation du processeur beaucoup plus faible) attendraient l'événement (l'un des acquire...
fonctions), cela ajoute environ 1-2us à la latence moyenne due au changement de contexte.
Comme il y a très peu de conflits en lecture, les consommateurs évoluent très bien avec le nombre de threads de travail, par exemple pour 3 threads sur ma machine:
total=1500000 samples, avg=0.07us
50%=0us, avg=0us
90%=0.155us, avg=0.016us
99%=0.361us, avg=0.038us
99.9%=8.723us, avg=0.044us
Les patchs seront les bienvenus :)
// Copyright (c) 2011-2012, Bronislaw (Bronek) Kozicki
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#pragma once
#include <core/api.hxx>
#include <core/wheel/exception.hxx>
#include <boost/noncopyable.hpp>
#include <boost/type_traits.hpp>
#include <boost/lexical_cast.hpp>
#include <typeinfo>
namespace core { namespace wheel
{
struct bad_size : core::exception
{
template<typename T> explicit bad_size(const T&, size_t m)
: core::exception(std::string("Slot capacity exceeded, sizeof(")
+ typeid(T).name()
+ ") = "
+ boost::lexical_cast<std::string>(sizeof(T))
+ ", capacity = "
+ boost::lexical_cast<std::string>(m)
)
{}
};
// inspired by Disruptor
template <typename Header>
class wheel : boost::noncopyable
{
__declspec(align(64))
struct slot_detail
{
// slot write: (memory barrier in wheel) > post_done > (memory barrier in wheel)
// slot read: (memory barrier in wheel) > read_done > (memory barrier in wheel)
// done writing or reading, must update wrtn_ or tail_ in wheel, as appropriate
template <bool Writing>
void done(wheel* w)
{
if (Writing)
w->post_done(sequence);
else
w->read_done();
}
// cache line for sequence number and header
long long sequence;
Header header;
// there is no such thing as data type with variable size, but we need it to avoid thrashing
// cache - so we invent one. The memory is reserved in runtime and we simply go beyond last element.
// This is well into UB territory! Using template parameter for this is not good, since it
// results in this small implementation detail leaking to all possible user interfaces.
__declspec(align(8))
char data[8];
};
// use this as a storage space for slot_detail, to guarantee 64 byte alignment
_declspec(align(64))
struct slot_block { long long padding[8]; };
public:
// wrap slot data to outside world
template <bool Writable>
class slot
{
template<typename> friend class wheel;
slot& operator=(const slot&); // moveable but non-assignable
// may only be constructed by wheel
slot(slot_detail* impl, wheel<Header>* w, size_t c)
: slot_(impl) , wheel_(w) , capacity_(c)
{}
public:
slot(slot&& s)
: slot_(s.slot_) , wheel_(s.wheel_) , capacity_(s.capacity_)
{
s.slot_ = NULL;
}
~slot()
{
if (slot_)
{
slot_->done<Writable>(wheel_);
}
}
// slot accessors - use Header to store information on what type is actually stored in data
bool empty() const { return !slot_; }
long long sequence() const { return slot_->sequence; }
Header& header() { return slot_->header; }
char* data() { return slot_->data; }
template <typename T> T& cast()
{
static_assert(boost::is_pod<T>::value, "Data type must be POD");
if (sizeof(T) > capacity_)
throw bad_size(T(), capacity_);
if (empty())
throw no_data();
return *((T*) data());
}
private:
slot_detail* slot_;
wheel<Header>* wheel_;
const size_t capacity_;
};
private:
// dynamic size of slot, with extra capacity, expressed in 64 byte blocks
static size_t sizeof_slot(size_t s)
{
size_t m = sizeof(slot_detail);
// add capacity less 8 bytes already within sizeof(slot_detail)
m += max(8, s) - 8;
// round up to 64 bytes, i.e. alignment of slot_detail
size_t r = m & ~(unsigned int)63;
if (r < m)
r += 64;
r /= 64;
return r;
}
// calculate actual slot capacity back from number of 64 byte blocks
static size_t slot_capacity(size_t s)
{
return s*64 - sizeof(slot_detail) + 8;
}
// round up to power of 2
static size_t round_size(size_t s)
{
// enfore minimum size
if (s <= min_size)
return min_size;
// find rounded value
--s;
size_t r = 1;
while (s)
{
s >>= 1;
r <<= 1;
};
return r;
}
slot_detail& at(long long sequence)
{
// find index from sequence number and return slot at found index of the wheel
return *((slot_detail*) &wheel_[(sequence & (size_ - 1)) * blocks_]);
}
public:
wheel(size_t capacity, size_t size)
: head_(0) , wrtn_(0) , rdng_(0) , tail_(0) , event_()
, blocks_(sizeof_slot(capacity)) , capacity_(slot_capacity(blocks_)) , size_(round_size(size))
{
static_assert(boost::is_pod<Header>::value, "Header type must be POD");
static_assert(sizeof(slot_block) == 64, "This was unexpected");
wheel_ = new slot_block[size_ * blocks_];
// all slots must be initialised to 0
memset(wheel_, 0, size_ * 64 * blocks_);
active_ = 1;
}
~wheel()
{
stop();
delete[] wheel_;
}
// all accessors needed
size_t capacity() const { return capacity_; } // capacity of a single slot
size_t size() const { return size_; } // number of slots available
size_t queue() const { return (size_t)head_ - (size_t)tail_; }
bool active() const { return active_ == 1; }
// enough to call it just once, to fine tune slot capacity
template <typename T>
void check() const
{
static_assert(boost::is_pod<T>::value, "Data type must be POD");
if (sizeof(T) > capacity_)
throw bad_size(T(), capacity_);
}
// stop the wheel - safe to execute many times
size_t stop()
{
InterlockedExchange(&active_, 0);
// must wait for current read to complete
while (rdng_ != tail_)
Sleep(10);
return size_t(head_ - tail_);
}
// return first available slot for write
slot<true> post()
{
if (!active_)
throw stopped();
// the only memory barrier on head seq. number we need, if not overflowing
long long h = InterlockedIncrement64(&head_);
while(h - (long long) size_ > tail_)
{
if (InterlockedDecrement64(&head_) == h - 1)
throw overflowing();
// protection against case of race condition when we are overflowing
// and two or more threads try to post and two or more messages are read,
// all at the same time. If this happens we must re-try, otherwise we
// could have skipped a sequence number - causing infinite wait in post_done
Sleep(0);
h = InterlockedIncrement64(&head_);
}
slot_detail& r = at(h);
r.sequence = h;
// wrap in writeable slot
return slot<true>(&r, this, capacity_);
}
// return first available slot for write, nothrow variant
slot<true> post(std::nothrow_t)
{
if (!active_)
return slot<true>(NULL, this, capacity_);
// the only memory barrier on head seq. number we need, if not overflowing
long long h = InterlockedIncrement64(&head_);
while(h - (long long) size_ > tail_)
{
if (InterlockedDecrement64(&head_) == h - 1)
return slot<true>(NULL, this, capacity_);
// must retry if race condition described above
Sleep(0);
h = InterlockedIncrement64(&head_);
}
slot_detail& r = at(h);
r.sequence = h;
// wrap in writeable slot
return slot<true>(&r, this, capacity_);
}
// read first available slot for read
slot<false> read()
{
slot_detail* r = NULL;
// compare rdng_ and wrtn_ early to avoid unnecessary memory barrier
if (active_ && rdng_ < wrtn_)
{
// the only memory barrier on reading seq. number we need
const long long h = InterlockedIncrement64(&rdng_);
// check if this slot has been written, step back if not
if (h > wrtn_)
InterlockedDecrement64(&rdng_);
else
r = &at(h);
}
// wrap in readable slot
return slot<false>(r , this, capacity_);
}
// waiting for new post, to be used by non-polling clients
void acquire()
{
event_.acquire();
}
bool try_acquire()
{
return event_.try_acquire();
}
bool try_acquire(unsigned long timeout)
{
return event_.try_acquire(timeout);
}
void release()
{}
private:
void post_done(long long sequence)
{
const long long t = sequence - 1;
// the only memory barrier on written seq. number we need
while(InterlockedCompareExchange64(&wrtn_, sequence, t) != t)
Sleep(0);
// this is outside of critical path for polling clients
event_.set();
}
void read_done()
{
// the only memory barrier on tail seq. number we need
InterlockedIncrement64(&tail_);
}
// each in its own cache line
// head_ - wrtn_ = no. of messages being written at this moment
// rdng_ - tail_ = no. of messages being read at the moment
// head_ - tail_ = no. of messages to read (including those being written and read)
// wrtn_ - rdng_ = no. of messages to read (excluding those being written or read)
__declspec(align(64)) volatile long long head_; // currently writing or written
__declspec(align(64)) volatile long long wrtn_; // written
__declspec(align(64)) volatile long long rdng_; // currently reading or read
__declspec(align(64)) volatile long long tail_; // read
__declspec(align(64)) volatile long active_; // flag switched to 0 when stopped
__declspec(align(64))
api::event event_; // set when new message is posted
const size_t blocks_; // number of 64-byte blocks in a single slot_detail
const size_t capacity_; // capacity of data() section per single slot. Initialisation depends on blocks_
const size_t size_; // number of slots available, always power of 2
slot_block* wheel_;
};
}}
Voici à quoi peut ressembler le thread de travail du consommateur d'interrogation:
while (wheel.active())
{
core::wheel::wheel<int>::slot<false> slot = wheel.read();
if (!slot.empty())
{
Data& d = slot.cast<Data>();
// do work
}
// uncomment below for waiting consumer, saving CPU cycles
// else
// wheel.try_acquire(10);
}
Modifié exemple de consommateur ajouté
L'implémentation la plus appropriée dépend des propriétés souhaitées d'une file d'attente. Doit-il être illimité ou borné, c'est bien? Devrait-il être linéarisable , ou des exigences moins strictes conviendraient-elles? Quelle est la force FIFO garantit que vous avez besoin? Êtes-vous prêt à payer le coût du retour de la liste par le consommateur (il existe une implémentation très simple où le consommateur attrape la queue d'une liste à lien unique, obtenant ainsi à la fois tous les éléments mis par les producteurs jusqu'à ce moment)? Doit-il garantir qu'aucun thread n'est jamais bloqué, ou de petites chances d'obtenir un thread bloqué sont ok? Et etc.
Quelques liens utiles:
Est-ce que plusieurs producteurs, un seul consommateur sont possibles dans un cadre sans verrouillage?
http://www.1024cores.net/home/lock-free-algorithms/queues
http://www.1024cores.net/home/lock-free-algorithms/queues/intrusive-mpsc-node-based-queue
https://groups.google.com/group/comp.programming.threads/browse_frm/thread/33f79c75146582f
J'espère que cela pourra aider.
Voici la technique que j'ai utilisée pour ma bibliothèque multi-tâches/multi-threading coopérative (MACE) http://bytemaster.github.com/mace/ . Il a l'avantage d'être sans verrou, sauf lorsque la file d'attente est vide.
struct task {
boost::function<void()> func;
task* next;
};
boost::mutex task_ready_mutex;
boost::condition_variable task_ready;
boost::atomic<task*> task_in_queue;
// this can be called from any thread
void thread::post_task( task* t ) {
// atomically post the task to the queue.
task* stale_head = task_in_queue.load(boost::memory_order_relaxed);
do { t->next = stale_head;
} while( !task_in_queue.compare_exchange_weak( stale_head, t, boost::memory_order_release ) );
// Because only one thread can post the 'first task', only that thread will attempt
// to aquire the lock and therefore there should be no contention on this lock except
// when *this thread is about to block on a wait condition.
if( !stale_head ) {
boost::unique_lock<boost::mutex> lock(task_ready_mutex);
task_ready.notify_one();
}
}
// this is the consumer thread.
void process_tasks() {
while( !done ) {
// this will atomically pop everything that has been posted so far.
pending = task_in_queue.exchange(0,boost::memory_order_consume);
// pending is a linked list in 'reverse post order', so process them
// from tail to head if you want to maintain order.
if( !pending ) { // lock scope
boost::unique_lock<boost::mutex> lock(task_ready_mutex);
// check one last time while holding the lock before blocking.
if( !task_in_queue ) task_ready.wait( lock );
}
}