J'ai trouvé une régression des performances intéressante dans un petit extrait C++, lorsque j'active C++ 11:
#include <vector>
struct Item
{
int a;
int b;
};
int main()
{
const std::size_t num_items = 10000000;
std::vector<Item> container;
container.reserve(num_items);
for (std::size_t i = 0; i < num_items; ++i) {
container.Push_back(Item());
}
return 0;
}
Avec g ++ (GCC) 4.8.2 20131219 (version préliminaire) et C++ 03 j'obtiens:
milian:/tmp$ g++ -O3 main.cpp && perf stat -r 10 ./a.out
Performance counter stats for './a.out' (10 runs):
35.206824 task-clock # 0.988 CPUs utilized ( +- 1.23% )
4 context-switches # 0.116 K/sec ( +- 4.38% )
0 cpu-migrations # 0.006 K/sec ( +- 66.67% )
849 page-faults # 0.024 M/sec ( +- 6.02% )
95,693,808 cycles # 2.718 GHz ( +- 1.14% ) [49.72%]
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
95,282,359 instructions # 1.00 insns per cycle ( +- 0.65% ) [75.27%]
30,104,021 branches # 855.062 M/sec ( +- 0.87% ) [77.46%]
6,038 branch-misses # 0.02% of all branches ( +- 25.73% ) [75.53%]
0.035648729 seconds time elapsed ( +- 1.22% )
Avec C++ 11 activé en revanche, les performances se dégradent considérablement:
milian:/tmp$ g++ -std=c++11 -O3 main.cpp && perf stat -r 10 ./a.out
Performance counter stats for './a.out' (10 runs):
86.485313 task-clock # 0.994 CPUs utilized ( +- 0.50% )
9 context-switches # 0.104 K/sec ( +- 1.66% )
2 cpu-migrations # 0.017 K/sec ( +- 26.76% )
798 page-faults # 0.009 M/sec ( +- 8.54% )
237,982,690 cycles # 2.752 GHz ( +- 0.41% ) [51.32%]
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
135,730,319 instructions # 0.57 insns per cycle ( +- 0.32% ) [75.77%]
30,880,156 branches # 357.057 M/sec ( +- 0.25% ) [75.76%]
4,188 branch-misses # 0.01% of all branches ( +- 7.59% ) [74.08%]
0.087016724 seconds time elapsed ( +- 0.50% )
Quelqu'un peut-il expliquer cela? Jusqu'à présent, mon expérience était que la STL devient plus rapide en activant C++ 11, en particulier. grâce à déplacer la sémantique.
EDIT: Comme suggéré, en utilisant container.emplace_back();
à la place, les performances sont comparables à la version C++ 03. Comment la version C++ 03 peut-elle obtenir la même chose pour Push_back
?
milian:/tmp$ g++ -std=c++11 -O3 main.cpp && perf stat -r 10 ./a.out
Performance counter stats for './a.out' (10 runs):
36.229348 task-clock # 0.988 CPUs utilized ( +- 0.81% )
4 context-switches # 0.116 K/sec ( +- 3.17% )
1 cpu-migrations # 0.017 K/sec ( +- 36.85% )
798 page-faults # 0.022 M/sec ( +- 8.54% )
94,488,818 cycles # 2.608 GHz ( +- 1.11% ) [50.44%]
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
94,851,411 instructions # 1.00 insns per cycle ( +- 0.98% ) [75.22%]
30,468,562 branches # 840.991 M/sec ( +- 1.07% ) [76.71%]
2,723 branch-misses # 0.01% of all branches ( +- 9.84% ) [74.81%]
0.036678068 seconds time elapsed ( +- 0.80% )
Je peux reproduire vos résultats sur ma machine avec les options que vous écrivez dans votre message.
Cependant, si j'active également optimisation du temps de liaison (je passe également le drapeau -flto
À gcc 4.7.2), les résultats sont identiques :
(Je compile votre code d'origine, avec container.Push_back(Item());
)
$ g++ -std=c++11 -O3 -flto regr.cpp && perf stat -r 10 ./a.out
Performance counter stats for './a.out' (10 runs):
35.426793 task-clock # 0.986 CPUs utilized ( +- 1.75% )
4 context-switches # 0.116 K/sec ( +- 5.69% )
0 CPU-migrations # 0.006 K/sec ( +- 66.67% )
19,801 page-faults # 0.559 M/sec
99,028,466 cycles # 2.795 GHz ( +- 1.89% ) [77.53%]
50,721,061 stalled-cycles-frontend # 51.22% frontend cycles idle ( +- 3.74% ) [79.47%]
25,585,331 stalled-cycles-backend # 25.84% backend cycles idle ( +- 4.90% ) [73.07%]
141,947,224 instructions # 1.43 insns per cycle
# 0.36 stalled cycles per insn ( +- 0.52% ) [88.72%]
37,697,368 branches # 1064.092 M/sec ( +- 0.52% ) [88.75%]
26,700 branch-misses # 0.07% of all branches ( +- 3.91% ) [83.64%]
0.035943226 seconds time elapsed ( +- 1.79% )
$ g++ -std=c++98 -O3 -flto regr.cpp && perf stat -r 10 ./a.out
Performance counter stats for './a.out' (10 runs):
35.510495 task-clock # 0.988 CPUs utilized ( +- 2.54% )
4 context-switches # 0.101 K/sec ( +- 7.41% )
0 CPU-migrations # 0.003 K/sec ( +-100.00% )
19,801 page-faults # 0.558 M/sec ( +- 0.00% )
98,463,570 cycles # 2.773 GHz ( +- 1.09% ) [77.71%]
50,079,978 stalled-cycles-frontend # 50.86% frontend cycles idle ( +- 2.20% ) [79.41%]
26,270,699 stalled-cycles-backend # 26.68% backend cycles idle ( +- 8.91% ) [74.43%]
141,427,211 instructions # 1.44 insns per cycle
# 0.35 stalled cycles per insn ( +- 0.23% ) [87.66%]
37,366,375 branches # 1052.263 M/sec ( +- 0.48% ) [88.61%]
26,621 branch-misses # 0.07% of all branches ( +- 5.28% ) [83.26%]
0.035953916 seconds time elapsed
Quant aux raisons, il faut regarder le code d'assemblage généré (g++ -std=c++11 -O3 -S regr.cpp
). En mode C++ 11, le code généré est nettement plus encombré que pour le mode C++ 98 et insérant le fonction void std::vector<Item,std::allocator<Item>>::_M_emplace_back_aux<Item>(Item&&)
échoue en mode C++ 11 avec la valeur par défaut inline-limit
.
Cet échec en ligne a un effet domino. Non pas parce que cette fonction est appelée (elle n'est même pas appelée!) Mais parce que nous devons être préparés: = Si il est appelé, les arguments de la fonction (Item.a
Et Item.b
) Doivent déjà être au bon endroit. Cela conduit à un code assez désordonné.
Voici la partie pertinente du code généré pour le cas où l'inline réussit :
.L42:
testq %rbx, %rbx # container$D13376$_M_impl$_M_finish
je .L3 #,
movl $0, (%rbx) #, container$D13376$_M_impl$_M_finish_136->a
movl $0, 4(%rbx) #, container$D13376$_M_impl$_M_finish_136->b
.L3:
addq $8, %rbx #, container$D13376$_M_impl$_M_finish
subq $1, %rbp #, ivtmp.106
je .L41 #,
.L14:
cmpq %rbx, %rdx # container$D13376$_M_impl$_M_finish, container$D13376$_M_impl$_M_end_of_storage
jne .L42 #,
Ceci est une boucle agréable et compacte. Maintenant, comparons cela à celui du cas échoué en ligne :
.L49:
testq %rax, %rax # D.15772
je .L26 #,
movq 16(%rsp), %rdx # D.13379, D.13379
movq %rdx, (%rax) # D.13379, *D.15772_60
.L26:
addq $8, %rax #, tmp75
subq $1, %rbx #, ivtmp.117
movq %rax, 40(%rsp) # tmp75, container.D.13376._M_impl._M_finish
je .L48 #,
.L28:
movq 40(%rsp), %rax # container.D.13376._M_impl._M_finish, D.15772
cmpq 48(%rsp), %rax # container.D.13376._M_impl._M_end_of_storage, D.15772
movl $0, 16(%rsp) #, D.13379.a
movl $0, 20(%rsp) #, D.13379.b
jne .L49 #,
leaq 16(%rsp), %rsi #,
leaq 32(%rsp), %rdi #,
call _ZNSt6vectorI4ItemSaIS0_EE19_M_emplace_back_auxIIS0_EEEvDpOT_ #
Ce code est encombré et il se passe beaucoup plus de choses dans la boucle que dans le cas précédent. Avant la fonction call
(dernière ligne affichée), les arguments doivent être placés de manière appropriée:
leaq 16(%rsp), %rsi #,
leaq 32(%rsp), %rdi #,
call _ZNSt6vectorI4ItemSaIS0_EE19_M_emplace_back_auxIIS0_EEEvDpOT_ #
Même si cela n'est jamais réellement exécuté, la boucle organise les choses avant:
movl $0, 16(%rsp) #, D.13379.a
movl $0, 20(%rsp) #, D.13379.b
Cela conduit au code désordonné. S'il n'y a pas de fonction call
parce que l'inline réussit, nous n'avons que 2 instructions de déplacement dans la boucle et il n'y a pas de problème avec le %rsp
(pointeur de pile). Cependant, si l'inline échoue, nous obtenons 6 coups et nous gâchons beaucoup avec le %rsp
.
Juste pour étayer ma théorie (notez le -finline-limit
), Tous deux en mode C++ 11:
$ g++ -std=c++11 -O3 -finline-limit=105 regr.cpp && perf stat -r 10 ./a.out
Performance counter stats for './a.out' (10 runs):
84.739057 task-clock # 0.993 CPUs utilized ( +- 1.34% )
8 context-switches # 0.096 K/sec ( +- 2.22% )
1 CPU-migrations # 0.009 K/sec ( +- 64.01% )
19,801 page-faults # 0.234 M/sec
266,809,312 cycles # 3.149 GHz ( +- 0.58% ) [81.20%]
206,804,948 stalled-cycles-frontend # 77.51% frontend cycles idle ( +- 0.91% ) [81.25%]
129,078,683 stalled-cycles-backend # 48.38% backend cycles idle ( +- 1.37% ) [69.49%]
183,130,306 instructions # 0.69 insns per cycle
# 1.13 stalled cycles per insn ( +- 0.85% ) [85.35%]
38,759,720 branches # 457.401 M/sec ( +- 0.29% ) [85.43%]
24,527 branch-misses # 0.06% of all branches ( +- 2.66% ) [83.52%]
0.085359326 seconds time elapsed ( +- 1.31% )
$ g++ -std=c++11 -O3 -finline-limit=106 regr.cpp && perf stat -r 10 ./a.out
Performance counter stats for './a.out' (10 runs):
37.790325 task-clock # 0.990 CPUs utilized ( +- 2.06% )
4 context-switches # 0.098 K/sec ( +- 5.77% )
0 CPU-migrations # 0.011 K/sec ( +- 55.28% )
19,801 page-faults # 0.524 M/sec
104,699,973 cycles # 2.771 GHz ( +- 2.04% ) [78.91%]
58,023,151 stalled-cycles-frontend # 55.42% frontend cycles idle ( +- 4.03% ) [78.88%]
30,572,036 stalled-cycles-backend # 29.20% backend cycles idle ( +- 5.31% ) [71.40%]
140,669,773 instructions # 1.34 insns per cycle
# 0.41 stalled cycles per insn ( +- 1.40% ) [88.14%]
38,117,067 branches # 1008.646 M/sec ( +- 0.65% ) [89.38%]
27,519 branch-misses # 0.07% of all branches ( +- 4.01% ) [86.16%]
0.038187580 seconds time elapsed ( +- 2.05% )
En effet, si nous demandons au compilateur de faire un peu plus d'efforts pour intégrer cette fonction, la différence de performances disparaît.
Alors, quelle est la conclusion de cette histoire? Les échecs en ligne peuvent vous coûter cher et vous devriez utiliser pleinement les capacités du compilateur: Je ne peux que recommander l'optimisation du temps de liaison. Cela a donné une performance significative booster mes programmes (jusqu'à 2,5x) et tout ce que je devais faire était de passer le drapeau -flto
. C'est une très bonne affaire! ;)
Cependant, je ne recommande pas de jeter votre code avec le mot-clé en ligne; laissez le compilateur décider quoi faire. (L'optimiseur est autorisé à traiter le mot clé en ligne comme un espace blanc de toute façon.)
Grande question, +1!