web-dev-qa-db-fra.com

C Comment "dessiner" un arbre binaire sur la console

Quels algorithmes peuvent être utilisés pour dessiner un arbre binaire dans la console? L'arbre est implémenté en C. Par exemple, un BST avec des nombres: 2 3 4 5 8 serait affiché dans la console comme:

alt text

67
Marek Szanyi

Découvrez Impression d'arbres binaires en Ascii

De @AnyOneElse Pastbin ci-dessous:

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!Code originally from /http://www.openasthra.com/c-tidbits/printing-binary-trees-in-ascii/
!!! Just saved it, cause the website is down.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Printing Binary Trees in Ascii

Here we are not going to discuss what binary trees are (please refer this, if you are looking for binary search trees), or their operations but printing them in ascii.

The below routine prints tree in ascii for a given Tree representation which contains list of nodes, and node structure is this

    struct Tree 
    {
      Tree * left, * right;
      int element;
    };

This pic illustrates what the below routine does on canvas..
ascii tree

Here is the printing routine..

    b5855d39a6b8a2735ddcaa04a404c125001 

Auxiliary routines..

    //This function prints the given level of the given tree, assuming
    //that the node has the given x cordinate.
    void print_level(asciinode *node, int x, int level) 
    {
      int i, isleft;
      if (node == NULL) return;
      isleft = (node->parent_dir == -1);
      if (level == 0) 
      {
        for (i=0; i<(x-print_next-((node->lablen-isleft)/2)); i++) 
        {
          printf(" ");
        }
        print_next += i;
        printf("%s", node->label);
        print_next += node->lablen;
      } 
      else if (node->Edge_length >= level) 
      {
        if (node->left != NULL) 
        {
          for (i=0; i<(x-print_next-(level)); i++) 
          {
            printf(" ");
          }
          print_next += i;
          printf("/");
          print_next++;
        }
        if (node->right != NULL) 
        {
          for (i=0; i<(x-print_next+(level)); i++) 
          {
            printf(" ");
          }
          print_next += i;
          printf("\\");
          print_next++;
        }
      } 
      else 
      {
        print_level(node->left, 
                    x-node->Edge_length-1, 
                    level-node->Edge_length-1);
        print_level(node->right, 
                    x+node->Edge_length+1, 
                    level-node->Edge_length-1);
      }
    }


    //This function fills in the Edge_length and 
    //height fields of the specified tree
    void compute_Edge_lengths(asciinode *node) 
    {
      int h, hmin, i, delta;
      if (node == NULL) return;
      compute_Edge_lengths(node->left);
      compute_Edge_lengths(node->right);

      /* first fill in the Edge_length of node */
      if (node->right == NULL && node->left == NULL) 
      {
        node->Edge_length = 0;
      } 
      else 
      {
        if (node->left != NULL) 
        {
          for (i=0; i<node->left->height && i < MAX_HEIGHT; i++) 
          {
            rprofile[i] = -INFINITY;
          }
          compute_rprofile(node->left, 0, 0);
          hmin = node->left->height;
        } 
        else 
        {
          hmin = 0;
        }
        if (node->right != NULL) 
        {
          for (i=0; i<node->right->height && i < MAX_HEIGHT; i++) 
          {
            lprofile[i] = INFINITY;
          }
          compute_lprofile(node->right, 0, 0);
          hmin = MIN(node->right->height, hmin);
        } 
        else 
        {
          hmin = 0;
        }
        delta = 4;
        for (i=0; i<hmin; i++) 
        {
          delta = MAX(delta, gap + 1 + rprofile[i] - lprofile[i]);
        }

        //If the node has two children of height 1, then we allow the
        //two leaves to be within 1, instead of 2 
        if (((node->left != NULL && node->left->height == 1) ||
              (node->right != NULL && node->right->height == 1))&&delta>4) 
        {
          delta--;
        }

        node->Edge_length = ((delta+1)/2) - 1;
      }

      //now fill in the height of node
      h = 1;
      if (node->left != NULL) 
      {
        h = MAX(node->left->height + node->Edge_length + 1, h);
      }
      if (node->right != NULL) 
      {
        h = MAX(node->right->height + node->Edge_length + 1, h);
      }
      node->height = h;
    }

    asciinode * build_ascii_tree_recursive(Tree * t) 
    {
      asciinode * node;

      if (t == NULL) return NULL;

      node = malloc(sizeof(asciinode));
      node->left = build_ascii_tree_recursive(t->left);
      node->right = build_ascii_tree_recursive(t->right);

      if (node->left != NULL) 
      {
        node->left->parent_dir = -1;
      }

      if (node->right != NULL) 
      {
        node->right->parent_dir = 1;
      }

      sprintf(node->label, "%d", t->element);
      node->lablen = strlen(node->label);

      return node;
    }


    //Copy the tree into the ascii node structre
    asciinode * build_ascii_tree(Tree * t) 
    {
      asciinode *node;
      if (t == NULL) return NULL;
      node = build_ascii_tree_recursive(t);
      node->parent_dir = 0;
      return node;
    }

    //Free all the nodes of the given tree
    void free_ascii_tree(asciinode *node) 
    {
      if (node == NULL) return;
      free_ascii_tree(node->left);
      free_ascii_tree(node->right);
      free(node);
    }

    //The following function fills in the lprofile array for the given tree.
    //It assumes that the center of the label of the root of this tree
    //is located at a position (x,y).  It assumes that the Edge_length
    //fields have been computed for this tree.
    void compute_lprofile(asciinode *node, int x, int y) 
    {
      int i, isleft;
      if (node == NULL) return;
      isleft = (node->parent_dir == -1);
      lprofile[y] = MIN(lprofile[y], x-((node->lablen-isleft)/2));
      if (node->left != NULL) 
      {
        for (i=1; i <= node->Edge_length && y+i < MAX_HEIGHT; i++) 
        {
          lprofile[y+i] = MIN(lprofile[y+i], x-i);
        }
      }
      compute_lprofile(node->left, x-node->Edge_length-1, y+node->Edge_length+1);
      compute_lprofile(node->right, x+node->Edge_length+1, y+node->Edge_length+1);
    }

    void compute_rprofile(asciinode *node, int x, int y) 
    {
      int i, notleft;
      if (node == NULL) return;
      notleft = (node->parent_dir != -1);
      rprofile[y] = MAX(rprofile[y], x+((node->lablen-notleft)/2));
      if (node->right != NULL) 
      {
        for (i=1; i <= node->Edge_length && y+i < MAX_HEIGHT; i++) 
        {
          rprofile[y+i] = MAX(rprofile[y+i], x+i);
        }
      }
      compute_rprofile(node->left, x-node->Edge_length-1, y+node->Edge_length+1);
      compute_rprofile(node->right, x+node->Edge_length+1, y+node->Edge_length+1);
    }

Here is the asciii tree structure…

    struct asciinode_struct
    {
      asciinode * left, * right;

      //length of the Edge from this node to its children
      int Edge_length; 

      int height;      

      int lablen;

      //-1=I am left, 0=I am root, 1=right   
      int parent_dir;   

      //max supported unit32 in dec, 10 digits max
      char label[11];  
    };

sortie:

        2
       / \
      /   \
     /     \
    1       3
   / \     / \
  0   7   9   1
 /   / \     / \
2   1   0   8   8
       /
      7
40
Jonas Elfström

Code:

int _print_t(tnode *tree, int is_left, int offset, int depth, char s[20][255])
{
    char b[20];
    int width = 5;

    if (!tree) return 0;

    sprintf(b, "(%03d)", tree->val);

    int left  = _print_t(tree->left,  1, offset,                depth + 1, s);
    int right = _print_t(tree->right, 0, offset + left + width, depth + 1, s);

#ifdef COMPACT
    for (int i = 0; i < width; i++)
        s[depth][offset + left + i] = b[i];

    if (depth && is_left) {

        for (int i = 0; i < width + right; i++)
            s[depth - 1][offset + left + width/2 + i] = '-';

        s[depth - 1][offset + left + width/2] = '.';

    } else if (depth && !is_left) {

        for (int i = 0; i < left + width; i++)
            s[depth - 1][offset - width/2 + i] = '-';

        s[depth - 1][offset + left + width/2] = '.';
    }
#else
    for (int i = 0; i < width; i++)
        s[2 * depth][offset + left + i] = b[i];

    if (depth && is_left) {

        for (int i = 0; i < width + right; i++)
            s[2 * depth - 1][offset + left + width/2 + i] = '-';

        s[2 * depth - 1][offset + left + width/2] = '+';
        s[2 * depth - 1][offset + left + width + right + width/2] = '+';

    } else if (depth && !is_left) {

        for (int i = 0; i < left + width; i++)
            s[2 * depth - 1][offset - width/2 + i] = '-';

        s[2 * depth - 1][offset + left + width/2] = '+';
        s[2 * depth - 1][offset - width/2 - 1] = '+';
    }
#endif

    return left + width + right;
}

void print_t(tnode *tree)
{
    char s[20][255];
    for (int i = 0; i < 20; i++)
        sprintf(s[i], "%80s", " ");

    _print_t(tree, 0, 0, 0, s);

    for (int i = 0; i < 20; i++)
        printf("%s\n", s[i]);
}

Sortie:

                           .----------------------(006)-------.                 
                      .--(001)-------.                   .--(008)--.            
                 .--(-02)       .--(003)-------.       (007)     (009)          
       .-------(-06)          (002)       .--(005)                              
  .--(-08)--.                           (004)                                   
(-09)     (-07)                     

ou

                                                  (006)                         
                           +------------------------+---------+                 
                         (001)                              (008)               
                      +----+---------+                   +----+----+            
                    (-02)          (003)               (007)     (009)          
                 +----+         +----+---------+                                
               (-06)          (002)          (005)                              
       +---------+                        +----+                                
     (-08)                              (004)                                   
  +----+----+                                                                   
(-09)     (-07)                                                       
43
user1571409

Quelques conseils: l'espacement entre les nœuds à la même profondeur (par exemple, 2 et 4 ou 3 et 8 dans votre exemple) est fonction de la profondeur.

Chaque ligne imprimée se compose de tous les nœuds de même profondeur, imprimés du nœud le plus à gauche au nœud le plus à droite.

Vous avez donc besoin d'un moyen, par exemple, d'organiser vos nœuds dans des tableaux de lignes, en fonction de leur profondeur, dans l'ordre de leur extrême gauche.

En partant du nœud racine, une recherche en largeur d'abord visitera les nœuds dans l'ordre de profondeur et d'extrême gauche.

L'espacement entre les nœuds peut être trouvé en trouvant la hauteur maximale de l'arbre, en utilisant une largeur constante pour les nœuds les plus profonds, et en doublant cette largeur pour chaque moindre profondeur, de sorte que la largeur pour n'importe quelle profondeur = (1 + maxdepth - currentdepth) * deepestwidth .

Ce nombre vous donne la "largeur horizontale" imprimée de chaque nœud à n'importe quelle profondeur particulière.

Un nœud gauche est horizontalement positionné dans la moitié gauche de la largeur de son parent, un nœud droit dans la moitié droite. Vous allez insérer des entretoises factices pour tout nœud qui n'a pas de parents; une façon plus simple de le faire serait de s'assurer que toutes les feuilles sont à la même profondeur que le nœud le plus profond, avec blanc comme valeur. Évidemment, vous devrez également compenser la largeur des valeurs, peut-être en faisant la largeur de la plus grande profondeur au moins aussi large que l'imprimé (représentation décimale, probablement) du noeud le plus important.

19
tpdi

Voici une autre prise lorsqu'un arbre est implémenté dans un tableau:

#include <stdio.h>
#include <math.h>


#define PARENT(i) ((i-1) / 2)
#define NUM_NODES 15
#define LINE_WIDTH 70

int main() {
    int tree[NUM_NODES]={0,1,2,3,4,5,6,7,8,9,1,2,3,4,5};
    int print_pos[NUM_NODES];
    int i, j, k, pos, x=1, level=0;

    print_pos[0] = 0;
    for(i=0,j=1; i<NUM_NODES; i++,j++) {
        pos = print_pos[PARENT(i)] + (i%2?-1:1)*(LINE_WIDTH/(pow(2,level+1))+1);

        for (k=0; k<pos-x; k++) printf("%c",i==0||i%2?' ':'-');
        printf("%d",tree[i]);

        print_pos[i] = x = pos+1;
        if (j==pow(2,level)) {
            printf("\n");
            level++;
            x = 1;
            j = 0;
        }
    }
    return 0;
}

Sortie:

                                   0
                  1-----------------------------------2
          3-----------------4                 5-----------------6
      7---------8       9---------1       2---------3       4---------5
11
Bula

J'ai cette petite solution en c ++ - elle pourrait facilement être convertie en c.

Ma solution nécessite une structure de données supplémentaire pour stocker la profondeur du nœud actuel dans l'arborescence (car, si vous travaillez avec une arborescence incomplète, la profondeur d'une sous-arborescence donnée peut ne pas être cohérente avec sa profondeur dans l'arborescence complète.)

#include <iostream>
#include <utility>
#include <algorithm>
#include <list>

namespace tree {

template<typename T>
struct node
{
  T data;
  node* l;
  node* r;
  node(T&& data_ = T()) : data(std::move(data_)), l(0), r(0) {}
};

template<typename T>
int max_depth(node<T>* n)
{
  if (!n) return 0;
  return 1 + std::max(max_depth(n->l), max_depth(n->r));
}

template<typename T>
void prt(node<T>* n)
{
  struct node_depth
  {
    node<T>* n;
    int lvl;
    node_depth(node<T>* n_, int lvl_) : n(n_), lvl(lvl_) {}
  };

  int depth = max_depth(n);

  char buf[1024];
  int last_lvl = 0;
  int offset = (1 << depth) - 1;

  // using a queue means we perform a breadth first iteration through the tree
  std::list<node_depth> q;

  q.Push_back(node_depth(n, last_lvl));
  while (q.size())
  {
    const node_depth& nd = *q.begin();

    // moving to a new level in the tree, output a new line and calculate new offset
    if (last_lvl != nd.lvl)
    {
      std::cout << "\n";

      last_lvl = nd.lvl;
      offset = (1 << (depth - nd.lvl)) - 1;
    }

    // output <offset><data><offset>
    if (nd.n)
      sprintf(buf, " %*s%d%*s", offset, " ", nd.n->data, offset, " ");
    else
      sprintf(buf, " %*s", offset << 1, " ");
    std::cout << buf;

    if (nd.n)
    {
      q.Push_back(node_depth(nd.n->l, last_lvl + 1));
      q.Push_back(node_depth(nd.n->r, last_lvl + 1));
    }

    q.pop_front();
  }
  std::cout << "\n";
}

}

int main()
{
  typedef tree::node<int> node;
  node* head = new node();
  head->l    = new node(1);
  head->r    = new node(2);
  head->l->l = new node(3);
  head->l->r = new node(4);
  head->r->l = new node(5);
  head->r->r = new node(6);

  tree::prt(head);

  return 0;
}

Il imprime les éléments suivants:

        0                                                                                                
    1       2                                                                                            
  3   4   5   6                                                                                          
8
Steve Lorimer

Regardez la sortie de la commande pstree sous Linux. Il ne produit pas la sortie sous la forme exacte que vous souhaitez, mais à mon humble avis, il est plus lisible de cette façon.

3
Anonymous

Je seconde la recommandation de litb. J'ai dû le faire récemment pour imprimer l'arborescence VAD d'un processus Windows et j'ai utilisé le langage DOT (il suffit d'imprimer les nœuds de votre fonction de marche d'arbre binaire):

http://en.wikipedia.org/wiki/DOT_language

Par exemple, votre fichier DOT contient:

digraph graphname {
 5 -> 3; 
 5 -> 8; 
 3 -> 4; 
 3 -> 2; 
} 

Vous générez le graphique avec dotty.exe ou le convertissez en PNG à l'aide de dot.exe.

3
Martin

Un arbre d'impression de solution C++ très simple dans le sens horizontal:

5
  1
    5
  9
    7
    14

Code (Node::print() c'est la fonction qui compte):

#include<iostream>

using namespace std;

class Tree;

class Node{
public:
    Node(int val): _val(val){}
    int val(){ return _val; }
    void add(Node *temp)
    {
        if (temp->val() > _val)
        {
            if (_rchild)
                _rchild->add(temp);
            else
            {
                _rchild = temp;
            }
        }
        else
        {
            if (_lchild)
                _lchild->add(temp);
            else
            {
                _lchild = temp;
            }
        }
    }
    void print()
    {
        for (int ix = 0; ix < _level; ++ix) cout << ' ';
        cout << _val << endl;
        ++_level;
        if (_lchild)
        {
            _lchild->print();
            --_level;
        }
        if (_rchild)
        {
            _rchild->print();
            --_level;
        }
    }
private:
    int _val;
    Node *_lchild;      
    Node *_rchild;
    static int _level;      
};

int Node::_level = 0;       

class Tree{
public:
    Tree(): _root(0){}  
    void add(int val)
    {
        Node *temp = new Node(val);
        if (!_root)
            _root = temp;
        else
            _root->add(temp);       
    }
    void print()
    {
        if (!_root)
            return;
        _root->print();             
    }
private:
    Node *_root;    
};

int main()
{
    Tree tree;
    tree.add(5);
    tree.add(9);
    tree.add(1);
    tree.add(7);
    tree.add(5);
    tree.add(14);
    tree.print();
}
2
cpp

J'ai un programme Ruby qui calcule les coordonnées où chaque nœud dans un arbre binaire doit être dessiné ici: http://hectorcorrea.com/Blog/Drawing-a- Arbre binaire en rubis

Ce code utilise un algorithme très basique pour calculer les coordonnées et ce n'est pas "efficace en surface" mais c'est un bon début. Si vous voulez voir le code "live" vous pouvez le tester ici: http://binarytree.heroku.com/

1
Hector Correa

Je pense que vous ne devriez pas coder cela vous-même, mais jetez un œil à Tree :: Visualize qui semble être une implémentation de Nice Perl avec différents styles possibles et utilisez/portez l'un des algorithmes là-bas.

1
schnaader