web-dev-qa-db-fra.com

Comment lister récursivement les répertoires en C sous Linux?

Je dois lister de manière récursive tous les répertoires et fichiers en programmation C. J'ai examiné FTW mais cela n’est pas inclus avec les 2 systèmes d’exploitation que j’utilise (Fedora et Minix). Je commence à avoir un gros mal de tête à cause de toutes les choses que j'ai lues au cours des dernières heures.

Si quelqu'un connaissait un extrait de code, je pourrais l'examiner, ce serait génial. Si quelqu'un pouvait me donner des directives judicieuses à ce sujet, je lui en serais très reconnaissant.

55
Charlie

Voici une version récursive:

#include <unistd.h>
#include <sys/types.h>
#include <dirent.h>
#include <stdio.h>
#include <string.h>

void listdir(const char *name, int indent)
{
    DIR *dir;
    struct dirent *entry;

    if (!(dir = opendir(name)))
        return;

    while ((entry = readdir(dir)) != NULL) {
        if (entry->d_type == DT_DIR) {
            char path[1024];
            if (strcmp(entry->d_name, ".") == 0 || strcmp(entry->d_name, "..") == 0)
                continue;
            snprintf(path, sizeof(path), "%s/%s", name, entry->d_name);
            printf("%*s[%s]\n", indent, "", entry->d_name);
            listdir(path, indent + 2);
        } else {
            printf("%*s- %s\n", indent, "", entry->d_name);
        }
    }
    closedir(dir);
}

int main(void) {
    listdir(".", 0);
    return 0;
}
60
Lloyd Macrohon

Pourquoi tout le monde insiste-t-il pour réinventer la roue encore et encore?

POSIX.1-2008 a normalisé la fonction nftw() , également définie dans la spécification Single Unix v4 (SuSv4), et disponible sous Linux (glibc, man 3 nftw ), OS X et les versions BSD les plus récentes. Ce n'est pas nouveau du tout.

Les implémentations naïves opendir()/readdir()/closedir() ne traitent presque jamais les cas où des répertoires ou des fichiers sont déplacés, renommés ou supprimés lors du parcours de l'arborescence, alors que nftw() devrait les gérer avec élégance.

A titre d'exemple, considérons le programme C suivant qui répertorie l'arborescence de répertoires commençant au répertoire de travail actuel, ou à chacun des répertoires nommés sur la ligne de commande, ou uniquement les fichiers nommés à la ligne de commande:

/* We want POSIX.1-2008 + XSI, i.e. SuSv4, features */
#define _XOPEN_SOURCE 700

/* Added on 2017-06-25:
   If the C library can support 64-bit file sizes
   and offsets, using the standard names,
   these defines tell the C library to do so. */
#define _LARGEFILE64_SOURCE
#define _FILE_OFFSET_BITS 64 

#include <stdlib.h>
#include <unistd.h>
#include <ftw.h>
#include <time.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>

/* POSIX.1 says each process has at least 20 file descriptors.
 * Three of those belong to the standard streams.
 * Here, we use a conservative estimate of 15 available;
 * assuming we use at most two for other uses in this program,
 * we should never run into any problems.
 * Most trees are shallower than that, so it is efficient.
 * Deeper trees are traversed fine, just a bit slower.
 * (Linux allows typically hundreds to thousands of open files,
 *  so you'll probably never see any issues even if you used
 *  a much higher value, say a couple of hundred, but
 *  15 is a safe, reasonable value.)
*/
#ifndef USE_FDS
#define USE_FDS 15
#endif

int print_entry(const char *filepath, const struct stat *info,
                const int typeflag, struct FTW *pathinfo)
{
    /* const char *const filename = filepath + pathinfo->base; */
    const double bytes = (double)info->st_size; /* Not exact if large! */
    struct tm mtime;

    localtime_r(&(info->st_mtime), &mtime);

    printf("%04d-%02d-%02d %02d:%02d:%02d",
           mtime.tm_year+1900, mtime.tm_mon+1, mtime.tm_mday,
           mtime.tm_hour, mtime.tm_min, mtime.tm_sec);

    if (bytes >= 1099511627776.0)
        printf(" %9.3f TiB", bytes / 1099511627776.0);
    else
    if (bytes >= 1073741824.0)
        printf(" %9.3f GiB", bytes / 1073741824.0);
    else
    if (bytes >= 1048576.0)
        printf(" %9.3f MiB", bytes / 1048576.0);
    else
    if (bytes >= 1024.0)
        printf(" %9.3f KiB", bytes / 1024.0);
    else
        printf(" %9.0f B  ", bytes);

    if (typeflag == FTW_SL) {
        char   *target;
        size_t  maxlen = 1023;
        ssize_t len;

        while (1) {

            target = malloc(maxlen + 1);
            if (target == NULL)
                return ENOMEM;

            len = readlink(filepath, target, maxlen);
            if (len == (ssize_t)-1) {
                const int saved_errno = errno;
                free(target);
                return saved_errno;
            }
            if (len >= (ssize_t)maxlen) {
                free(target);
                maxlen += 1024;
                continue;
            }

            target[len] = '\0';
            break;
        }

        printf(" %s -> %s\n", filepath, target);
        free(target);

    } else
    if (typeflag == FTW_SLN)
        printf(" %s (dangling symlink)\n", filepath);
    else
    if (typeflag == FTW_F)
        printf(" %s\n", filepath);
    else
    if (typeflag == FTW_D || typeflag == FTW_DP)
        printf(" %s/\n", filepath);
    else
    if (typeflag == FTW_DNR)
        printf(" %s/ (unreadable)\n", filepath);
    else
        printf(" %s (unknown)\n", filepath);

    return 0;
}


int print_directory_tree(const char *const dirpath)
{
    int result;

    /* Invalid directory path? */
    if (dirpath == NULL || *dirpath == '\0')
        return errno = EINVAL;

    result = nftw(dirpath, print_entry, USE_FDS, FTW_PHYS);
    if (result >= 0)
        errno = result;

    return errno;
}

int main(int argc, char *argv[])
{
    int arg;

    if (argc < 2) {

        if (print_directory_tree(".")) {
            fprintf(stderr, "%s.\n", strerror(errno));
            return EXIT_FAILURE;
        }

    } else {

        for (arg = 1; arg < argc; arg++) {
            if (print_directory_tree(argv[arg])) {
                fprintf(stderr, "%s.\n", strerror(errno));
                return EXIT_FAILURE;
            }
        }

    }

    return EXIT_SUCCESS;
}

La plupart du code ci-dessus se trouve dans print_entry(). Sa tâche consiste à imprimer chaque entrée de répertoire. Dans print_directory_tree(), nous demandons à nftw() de l'appeler pour chaque entrée de répertoire qu'il voit.

Le seul détail à la main mentionné ci-dessus concerne le nombre de descripteurs de fichiers à laisser nftw() utiliser. Si votre programme utilise au plus deux descripteurs de fichier supplémentaires (en plus des flux standard) au cours de la marche de l'arborescence de fichiers, il est connu que 15 est sûr (sur tous les systèmes ayant nftw() et essentiellement compatibles POSIX).

Sous Linux, vous pouvez utiliser sysconf(_SC_OPEN_MAX) pour rechercher le nombre maximal de fichiers ouverts et soustraire le nombre que vous utilisez simultanément avec l'appel nftw(), mais cela ne me dérange pas (à moins que je sache l'utilitaire serait principalement utilisé avec des structures de répertoire pathologiquement profondes). Quinze descripteurs ne ne limitent pas la profondeur de l'arbre; nftw() ralentit (et risque de ne pas détecter les modifications dans un répertoire si vous parcourez un répertoire de plus de 13 répertoires à partir de celui-ci, bien que les compromis et la capacité générale de détecter les modifications varient entre les systèmes et les implémentations de la bibliothèque C). Le simple fait d'utiliser une constante de compilation comme celle-ci permet de garder le code portable - cela ne devrait pas fonctionner uniquement sous Linux, mais également sur Mac OS X et toutes les variantes BSD actuelles, ainsi que la plupart des variantes Unix pas trop anciennes.

Dans un commentaire, Ruslan a mentionné qu'ils devaient basculer sur nftw64() car ils avaient des entrées de système de fichiers nécessitant des tailles/décalages de 64 bits, et la version "normale" de nftw() a échoué avec errno == EOVERFLOW. La solution correcte consiste à ne pas basculer vers les fonctions 64 bits spécifiques à GLIBC, mais à définir _LARGEFILE64_SOURCE Et _FILE_OFFSET_BITS 64. Celles-ci indiquent à la bibliothèque C de passer si possible aux tailles et aux décalages de fichiers 64 bits, tout en utilisant les fonctions standard (nftw(), fstat(), etc.) et les noms de types (off_t Etc.).

78
Nominal Animal
int is_directory_we_want_to_list(const char *parent, char *name) {
  struct stat st_buf;
  if (!strcmp(".", name) || !strcmp("..", name))
    return 0;
  char *path = alloca(strlen(name) + strlen(parent) + 2);
  sprintf(path, "%s/%s", parent, name);
  stat(path, &st_buf);
  return S_ISDIR(st_buf.st_mode);
}

int list(const char *name) {
  DIR *dir = opendir(name);
  struct dirent *ent;
  while (ent = readdir(dir)) {
    char *entry_name = ent->d_name;
    printf("%s\n", entry_name);
    if (is_directory_we_want_to_list(name, entry_name)) {
      // You can consider using alloca instead.
      char *next = malloc(strlen(name) + strlen(entry_name) + 2);
      sprintf(next, "%s/%s", name, entry_name);
      list(next);
      free(next);
    }
  }
  closedir(dir);
}

Les fichiers d'en-tête méritent d'être explorés dans ce contexte: stat.h , dirent.h . Gardez à l'esprit que le code ci-dessus ne vérifie pas les erreurs qui pourraient survenir.

Une approche complètement différente est proposée par ftw défini dans ftw.h.

8
Jan

Comme je l'ai mentionné dans mon commentaire, je pense qu'une approche récursive présente deux défauts inhérents à cette tâche.

La première faille est la limite sur les fichiers ouverts. Cette limite impose une limite à la traversée profonde. S'il y a suffisamment de sous-dossiers, l'approche récursive sera interrompue. (Voir l'édition concernant le dépassement de pile)

La deuxième faille est un peu plus subtile. L'approche récursive rend très difficile le test des liens durs. Si une arborescence de dossiers est cyclique (en raison de liens physiques), l'approche récursive sera interrompue (normalement sans débordement de pile). (Voir éditer concernant les liens durs)

Cependant, il est assez simple d'éviter ces problèmes en remplaçant la récursivité par un seul descripteur de fichier et des listes chaînées.

Je suppose que ce n'est pas un projet scolaire et que la récursion est facultative.

Voici un exemple d'application.

Utilisation a.out ./ pour afficher l’arborescence des dossiers.

Je m'excuse pour les macros et autres choses ... J'utilise généralement des fonctions inline, mais je pensais qu'il serait plus facile de suivre le code si tout était dans une seule fonction.

#include <dirent.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>

int main(int argc, char const *argv[]) {
  /* print use instruction unless a folder name was given */
  if (argc < 2)
    fprintf(stderr,
            "\nuse:\n"
            "    %s <directory>\n"
            "for example:\n"
            "    %s ./\n\n",
            argv[0], argv[0]),
        exit(0);

  /*************** a small linked list macro implementation ***************/

  typedef struct list_s {
    struct list_s *next;
    struct list_s *prev;
  } list_s;

#define LIST_INIT(name)                                                        \
  { .next = &name, .prev = &name }

#define LIST_Push(dest, node)                                                  \
  do {                                                                         \
    (node)->next = (dest)->next;                                               \
    (node)->prev = (dest);                                                     \
    (node)->next->prev = (node);                                               \
    (dest)->next = (node);                                                     \
  } while (0);

#define LIST_POP(list, var)                                                    \
  if ((list)->next == (list)) {                                                \
    var = NULL;                                                                \
  } else {                                                                     \
    var = (list)->next;                                                        \
    (list)->next = var->next;                                                  \
    var->next->prev = var->prev;                                               \
  }

  /*************** a record (file / folder) item type ***************/

  typedef struct record_s {
    /* this is a flat processing queue. */
    list_s queue;
    /* this will list all queued and processed folders (cyclic protection) */
    list_s folders;
    /* this will list all the completed items (siblings and such) */
    list_s list;
    /* unique ID */
    ino_t ino;
    /* name length */
    size_t len;
    /* name string */
    char name[];
  } record_s;

/* take a list_s pointer and convert it to the record_s pointer */
#define NODE2RECORD(node, list_name)                                           \
  ((record_s *)(((uintptr_t)(node)) -                                          \
                ((uintptr_t) & ((record_s *)0)->list_name)))

/* initializes a new record */
#define RECORD_INIT(name)                                                      \
  (record_s){.queue = LIST_INIT((name).queue),                                 \
             .folders = LIST_INIT((name).folders),                             \
             .list = LIST_INIT((name).list)}

  /*************** the actual code ***************/

  record_s records = RECORD_INIT(records);
  record_s *pos, *item;
  list_s *tmp;
  DIR *dir;
  struct dirent *entry;

  /* initialize the root folder record and add it to the queue */
  pos = malloc(sizeof(*pos) + strlen(argv[1]) + 2);
  *pos = RECORD_INIT(*pos);
  pos->len = strlen(argv[1]);
  memcpy(pos->name, argv[1], pos->len);
  if (pos->name[pos->len - 1] != '/')
    pos->name[pos->len++] = '/';
  pos->name[pos->len] = 0;
  /* Push to queue, but also Push to list (first item processed) */
  LIST_Push(&records.queue, &pos->queue);
  LIST_Push(&records.list, &pos->list);

  /* as long as the queue has items to be processed, do so */
  while (records.queue.next != &records.queue) {
    /* pop queued item */
    LIST_POP(&records.queue, tmp);
    /* collect record to process */
    pos = NODE2RECORD(tmp, queue);
    /* add record to the processed folder list */
    LIST_Push(&records.folders, &pos->folders);

    /* process the folder and add all folder data to current list */
    dir = opendir(pos->name);
    if (!dir)
      continue;

    while ((entry = readdir(dir)) != NULL) {

      /* create new item, copying it's path data and unique ID */
      item = malloc(sizeof(*item) + pos->len + entry->d_namlen + 2);
      *item = RECORD_INIT(*item);
      item->len = pos->len + entry->d_namlen;
      memcpy(item->name, pos->name, pos->len);
      memcpy(item->name + pos->len, entry->d_name, entry->d_namlen);
      item->name[item->len] = 0;
      item->ino = entry->d_ino;
      /* add item to the list, right after the `pos` item */
      LIST_Push(&pos->list, &item->list);

      /* unless it's a folder, we're done. */
      if (entry->d_type != DT_DIR)
        continue;

      /* test for '.' and '..' */
      if (entry->d_name[0] == '.' &&
          (entry->d_name[1] == 0 ||
           (entry->d_name[1] == '.' && entry->d_name[2] == 0)))
        continue;

      /* add folder marker */
      item->name[item->len++] = '/';
      item->name[item->len] = 0;

      /* test for cyclic processing */
      list_s *t = records.folders.next;
      while (t != &records.folders) {
        if (NODE2RECORD(t, folders)->ino == item->ino) {
          /* we already processed this folder! */
          break; /* this breaks from the small loop... */
        }
        t = t->next;
      }
      if (t != &records.folders)
        continue; /* if we broke from the small loop, entry is done */

      /* item is a new folder, add to queue */
      LIST_Push(&records.queue, &item->queue);
    }
    closedir(dir);
  }

  /*************** Printing the results and cleaning up ***************/
  while (records.list.next != &records.list) {
    /* pop list item */
    LIST_POP(&records.list, tmp);
    /* collect record to process */
    pos = NODE2RECORD(tmp, list);
    /* prepare for next iteration */
    LIST_POP(&records.list, tmp);
    fwrite(pos->name, pos->len, 1, stderr);
    fwrite("\n", 1, 1, stderr);
    free(pos);
  }
  return 0;
}

EDIT

@ Stargateur a mentionné dans les commentaires que le code récursif déborderait probablement de la pile avant d'atteindre la limite de fichiers ouverts.

Bien que je ne vois pas en quoi un dépassement de pile est meilleur, cette évaluation est probablement correcte tant que le processus n'est pas proche de la limite de fichiers lorsqu'il est appelé.

Un autre point mentionné par @Stargateur dans les commentaires est que la profondeur du code récursif est limitée par le nombre maximal de sous-répertoires (64000 sur le système de fichiers ext4) et que les liens physiques sont extrêmement improbables (les liens physiques vers des autorisé sur Linux/Unix).

C’est une bonne nouvelle si le code fonctionne sous Linux (ce qui, d’après la question), ne pose donc pas de problème (sauf si vous utilisez le code sous MacOS ou peut-être sous Windows) ... bien que les sous-dossiers 64K en récursion peut faire exploser la pile grande ouverte.

Cela dit, l'option sans récursion présente toujours des avantages, tels que le fait de pouvoir facilement ajouter une limite à la quantité d'éléments traités et de pouvoir mettre en cache le résultat.

P.S.

Selon les commentaires, voici une version non récursive du code qui ne vérifie pas les hiérarchies cycliques. Il est plus rapide et devrait être suffisamment sûr pour être utilisé sur une machine Linux où les liens physiques vers des dossiers ne sont pas autorisés.

#include <dirent.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>

int main(int argc, char const *argv[]) {
  /* print use instruction unless a folder name was given */
  if (argc < 2)
    fprintf(stderr,
            "\nuse:\n"
            "    %s <directory>\n"
            "for example:\n"
            "    %s ./\n\n",
            argv[0], argv[0]),
        exit(0);

  /*************** a small linked list macro implementation ***************/

  typedef struct list_s {
    struct list_s *next;
    struct list_s *prev;
  } list_s;

#define LIST_INIT(name)                                                        \
  { .next = &name, .prev = &name }

#define LIST_Push(dest, node)                                                  \
  do {                                                                         \
    (node)->next = (dest)->next;                                               \
    (node)->prev = (dest);                                                     \
    (node)->next->prev = (node);                                               \
    (dest)->next = (node);                                                     \
  } while (0);

#define LIST_POP(list, var)                                                    \
  if ((list)->next == (list)) {                                                \
    var = NULL;                                                                \
  } else {                                                                     \
    var = (list)->next;                                                        \
    (list)->next = var->next;                                                  \
    var->next->prev = var->prev;                                               \
  }

  /*************** a record (file / folder) item type ***************/

  typedef struct record_s {
    /* this is a flat processing queue. */
    list_s queue;
    /* this will list all the completed items (siblings and such) */
    list_s list;
    /* unique ID */
    ino_t ino;
    /* name length */
    size_t len;
    /* name string */
    char name[];
  } record_s;

/* take a list_s pointer and convert it to the record_s pointer */
#define NODE2RECORD(node, list_name)                                           \
  ((record_s *)(((uintptr_t)(node)) -                                          \
                ((uintptr_t) & ((record_s *)0)->list_name)))

/* initializes a new record */
#define RECORD_INIT(name)                                                      \
  (record_s){.queue = LIST_INIT((name).queue), .list = LIST_INIT((name).list)}

  /*************** the actual code ***************/

  record_s records = RECORD_INIT(records);
  record_s *pos, *item;
  list_s *tmp;
  DIR *dir;
  struct dirent *entry;

  /* initialize the root folder record and add it to the queue */
  pos = malloc(sizeof(*pos) + strlen(argv[1]) + 2);
  *pos = RECORD_INIT(*pos);
  pos->len = strlen(argv[1]);
  memcpy(pos->name, argv[1], pos->len);
  if (pos->name[pos->len - 1] != '/')
    pos->name[pos->len++] = '/';
  pos->name[pos->len] = 0;
  /* Push to queue, but also Push to list (first item processed) */
  LIST_Push(&records.queue, &pos->queue);
  LIST_Push(&records.list, &pos->list);

  /* as long as the queue has items to be processed, do so */
  while (records.queue.next != &records.queue) {
    /* pop queued item */
    LIST_POP(&records.queue, tmp);
    /* collect record to process */
    pos = NODE2RECORD(tmp, queue);

    /* process the folder and add all folder data to current list */
    dir = opendir(pos->name);
    if (!dir)
      continue;

    while ((entry = readdir(dir)) != NULL) {

      /* create new item, copying it's path data and unique ID */
      item = malloc(sizeof(*item) + pos->len + entry->d_namlen + 2);
      *item = RECORD_INIT(*item);
      item->len = pos->len + entry->d_namlen;
      memcpy(item->name, pos->name, pos->len);
      memcpy(item->name + pos->len, entry->d_name, entry->d_namlen);
      item->name[item->len] = 0;
      item->ino = entry->d_ino;
      /* add item to the list, right after the `pos` item */
      LIST_Push(&pos->list, &item->list);

      /* unless it's a folder, we're done. */
      if (entry->d_type != DT_DIR)
        continue;

      /* test for '.' and '..' */
      if (entry->d_name[0] == '.' &&
          (entry->d_name[1] == 0 ||
           (entry->d_name[1] == '.' && entry->d_name[2] == 0)))
        continue;

      /* add folder marker */
      item->name[item->len++] = '/';
      item->name[item->len] = 0;

      /* item is a new folder, add to queue */
      LIST_Push(&records.queue, &item->queue);
    }
    closedir(dir);
  }

  /*************** Printing the results and cleaning up ***************/
  while (records.list.next != &records.list) {
    /* pop list item */
    LIST_POP(&records.list, tmp);
    /* collect record to process */
    pos = NODE2RECORD(tmp, list);
    /* prepare for next iteration */
    LIST_POP(&records.list, tmp);
    fwrite(pos->name, pos->len, 1, stderr);
    fwrite("\n", 1, 1, stderr);
    free(pos);
  }
  return 0;
}
5
Myst

Voici une version simplifiée qui est récursive mais utilise beaucoup moins d'espace de pile:

#include <errno.h>
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>
#include <dirent.h>

void listdir(char *path, size_t size) {
    DIR *dir;
    struct dirent *entry;
    size_t len = strlen(path);

    if (!(dir = opendir(path))) {
        fprintf(stderr, "path not found: %s: %s\n",
                path, strerror(errno));
        return;
    }

    puts(path);
    while ((entry = readdir(dir)) != NULL) {
        char *name = entry->d_name;
        if (entry->d_type == DT_DIR) {
            if (!strcmp(name, ".") || !strcmp(name, ".."))
                continue;
            if (len + strlen(name) + 2 > size) {
                fprintf(stderr, "path too long: %s/%s\n", path, name);
            } else {
                path[len] = '/';
                strcpy(path + len + 1, name);
                listdir(path, size);
                path[len] = '\0';
            }
        } else {
            printf("%s/%s\n", path, name);
        }
    }
    closedir(dir);
}

int main(void) {
    char path[1024] = ".";
    listdir(path, sizeof path);
    return 0;
}

Sur mon système, sa sortie est exactement identique à celle de find .

4
chqrlie