Je dois synchroniser N processus client avec un serveur. Ces processus sont bifurqués par une fonction principale dans laquelle j'ai déclaré 3 sémaphores. J'ai décidé d'utiliser des sémaphores POSIX mais je ne sais pas comment les partager entre ces processus. Je pensais que la mémoire partagée devrait fonctionner correctement, mais j'ai quelques questions:
sizeof(sem_t)
dans size_t
champ de shmget
afin d'allouer exactement l'espace dont j'ai besoin?Il est facile de partager des sémaphores nommés POSIX
Choisissez un nom pour votre sémaphore
#define SNAME "/mysem"
Utilisation sem_open
avec O_CREAT
dans le processus qui les crée
sem_t *sem = sem_open(SNAME, O_CREAT, 0644, 3); /* Initial value is 3. */
Sémaphores ouverts dans les autres processus
sem_t *sem = sem_open(SEM_NAME, 0); /* Open a preexisting semaphore. */
Si vous insistez pour utiliser la mémoire partagée, c'est certainement possible.
int fd = shm_open("shmname", O_CREAT, O_RDWR);
ftruncate(fd, sizeof(sem_t));
sem_t *sem = mmap(NULL, sizeof(sem_t), PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);
sem_init(sem, 1, 1);
Je n'ai pas testé ce qui précède, cela pourrait donc être complètement fou.
J'ai écrit un exemple d'application où un parent (producteur) génère N threads enfant (consommateur) et utilise un tableau global pour communiquer des données entre eux. Le tableau global est une mémoire circulaire et est protégé lorsque des données sont écrites sur le tableau.
En tête de fichier:
#define TRUE 1
#define FALSE 0
#define SUCCESS 0
#define FAILURE -1
/*
* Function Declaration.
*/
void Parent( void );
int CalcBitmap(unsigned int Num);
void InitSemaphore( void );
void DeInitSemaphore( void );
int ComputeComplexCalc( int op1, int op2);
/*
* Thread functions.
*/
void *Child( void *arg );
void *Report( void *arg1 );
/*
* Macro Definition.
*/
#define INPUT_FILE "./input.txt"
#define NUM_OF_CHILDREN 10
#define SIZE_CIRCULAR_BUF 256
#define BUF_SIZE 128
//Set the bits corresponding to all threads.
#define SET_ALL_BITMAP( a ) a = uiBitmap;
//Clears the bit corresponding to a thread after
//every read.
#define CLEAR_BIT( a, b ) a &= ~( 1 << b );
/*
* Have a dedicated semaphore for each buffer
* to synchronize the acess to the shared memory
* between the producer (parent) and the consumers.
*/
sem_t ReadCntrMutex;
sem_t semEmptyNode[SIZE_CIRCULAR_BUF];
/*
* Global Variables.
*/
unsigned int uiBitmap = 0;
//Counter to track the number of processed buffers.
unsigned int Stats;
unsigned int uiParentCnt = 0;
char inputfile[BUF_SIZE];
int EndOfFile = FALSE;
/*
* Data Structure Definition. ( Circular Buffer )
*/
struct Message
{
int id;
unsigned int BufNo1;
unsigned int BufNo2;
/* Counter to check if all threads read the buffer. */
unsigned int uiBufReadCntr;
};
struct Message ShdBuf[SIZE_CIRCULAR_BUF];
Code source:
/*
#
# ipc_communicator is a IPC binary where a parent
# create ten child threads, read the input parameters
# from a file, sends that parameters to all the children.
# Each child computes the operations on those input parameters
# and writes them on to their own file.
#
# Author: Ashok Vairavan Date: 8/8/2014
*/
/*
* Generic Header Files.
*/
#include "stdio.h"
#include "unistd.h"
#include "string.h"
#include "pthread.h"
#include "errno.h"
#include "malloc.h"
#include "fcntl.h"
#include "getopt.h"
#include "stdlib.h"
#include "math.h"
#include "semaphore.h"
/*
* Private Header Files.
*/
#include "ipc*.h"
/*
* Function to calculate the bitmap based on the
* number of threads. This bitmap is used to
* track which thread read the buffer and the
* pending read threads.
*/
int CalcBitmap(unsigned int Num)
{
unsigned int uiIndex;
for( uiIndex = 0; uiIndex < Num; uiIndex++ )
{
uiBitmap |= 1 << uiIndex;
}
return uiBitmap;
}
/*
* Function that performs complex computation on
* numbers.
*/
int ComputeComplexCalc( int op1, int op2)
{
return sqrt(op1) + log(op2);
}
/*
* Function to initialise the semaphores.
* semEmptyNode indicates if the buffer is available
* for write. semFilledNode indicates that the buffer
* is available for read.
*/
void InitSemaphore( void )
{
unsigned int uiIndex=0;
CalcBitmap(NUM_OF_CHILDREN);
sem_init( &ReadCntrMutex, 0, 1);
while( uiIndex<SIZE_CIRCULAR_BUF )
{
sem_init( &semEmptyNode[uiIndex], 0, 1 );
uiIndex++;
}
return;
}
/*
* Function to de-initilaise semaphore.
*/
void DeInitSemaphore( void )
{
unsigned int uiIndex=0;
sem_destroy( &ReadCntrMutex);
while( uiIndex<SIZE_CIRCULAR_BUF )
{
sem_destroy( &semEmptyNode[uiIndex] );
uiIndex++;
}
return;
}
/* Returns TRUE if the parent had reached end of file */
int isEOF( void )
{
return __sync_fetch_and_add(&EndOfFile, 0);
}
/*
* Thread functions that prints the number of buffers
* processed per second.
*/
void *Report( void *arg1 )
{
int CumStats = 0;
while( TRUE )
{
sleep( 1 );
CumStats += __sync_fetch_and_sub(&Stats, 0);
printf("Processed Per Second: %d Cumulative Stats: %d\n",
__sync_fetch_and_sub(&Stats, Stats), CumStats);
}
return NULL;
}
/*
* Function that reads the data from the input file
* fills the shared buffer and signals the children to
* read the data.
*/
void Parent( void )
{
unsigned int op1, op2;
unsigned int uiCnt = 0;
/* Read the input parameters and process it in
* while loop till the end of file.
*/
FILE *fp = fopen( inputfile, "r" );
while( fscanf( fp, "%d %d", &op1, &op2 ) == 2 )
{
/* Wait for the buffer to become empty */
sem_wait(&semEmptyNode[uiCnt]);
/* Access the shared buffer */
ShdBuf[uiCnt].BufNo1 = op1;
ShdBuf[uiCnt].BufNo2 = op2;
/* Bitmap to track which thread read the buffer */
sem_wait( &ReadCntrMutex );
SET_ALL_BITMAP( ShdBuf[uiCnt].uiBufReadCntr );
sem_post( &ReadCntrMutex );
__sync_fetch_and_add( &uiParentCnt, 1);
uiCnt = uiParentCnt % SIZE_CIRCULAR_BUF;
}
/* If it is end of file, indicate it to other
* children using global variable.
*/
if( feof( fp ) )
{
__sync_add_and_fetch(&EndOfFile, TRUE);
fclose( fp );
return;
}
return;
}
/*
* Child thread function which takes threadID as an
* argument, creates a file using threadID, fetches the
* parameters from the shared memory, computes the calculation,
* writes the output to their own file and will release the
* semaphore when all the threads read the buffer.
*/
void *Child( void *ThreadPtr )
{
unsigned int uiCnt = 0, uiTotalCnt = 0;
unsigned int op1, op2;
char filename[BUF_SIZE];
int ThreadID;
ThreadID = *((int *) ThreadPtr);
free( ThreadPtr );
snprintf( filename, BUF_SIZE, "Child%d.txt", ThreadID );
FILE *fp = fopen( filename, "w" );
if( fp == NULL )
{
perror( "fopen" );
return NULL;
}
while (TRUE)
{
/* Wait till the parent fills the buffer */
if( __sync_fetch_and_add( &uiParentCnt, 0 ) > uiTotalCnt )
{
/* Access the shared memory */
op1 = ShdBuf[uiCnt].BufNo1;
op2 = ShdBuf[uiCnt].BufNo2;
fprintf(fp, "%d %d = %d\n", op1, op2,
ComputeComplexCalc( op1, op2) );
sem_wait( &ReadCntrMutex );
ShdBuf[uiCnt].uiBufReadCntr &= ~( 1 << ThreadID );
if( ShdBuf[uiCnt].uiBufReadCntr == 0 )
{
__sync_add_and_fetch(&Stats, 1);
/* Release the semaphore lock if
all readers read the data */
sem_post(&semEmptyNode[uiCnt]);
}
sem_post( &ReadCntrMutex );
uiTotalCnt++;
uiCnt = uiTotalCnt % SIZE_CIRCULAR_BUF;
/* If the parent reaches the end of file and
if the child thread read all the data then break out */
if( isEOF() && ( uiTotalCnt == uiParentCnt ) )
{
//printf("Thid %d p %d c %d\n", ThreadID, uiParentCnt, uiCnt );
break;
}
}
else
{
/* Sleep for ten micro seconds before checking
the shared memory */
usleep(10);
}
}
fclose( fp );
return NULL;
}
void usage( void )
{
printf(" Usage:\n");
printf(" -f - the absolute path of the input file where the input parameters are read from.\n\t\t Default input file: ./input.txt");
printf(" -? - Help Menu. \n" );
exit(1);
}
int main( int argc, char *argv[])
{
pthread_attr_t ThrAttr;
pthread_t ThrChild[NUM_OF_CHILDREN], ThrReport;
unsigned int uiThdIndex = 0;
unsigned int *pThreadID;
int c;
strncpy( inputfile, INPUT_FILE, BUF_SIZE );
while( ( c = getopt( argc, argv, "f:" )) != -1 )
{
switch( c )
{
case 'f':
strncpy( inputfile, optarg, BUF_SIZE );
break;
default:
usage();
}
}
if( access( inputfile, F_OK ) == -1 )
{
perror( "access" );
return FAILURE;
}
InitSemaphore();
pthread_attr_init( &ThrAttr );
while( uiThdIndex< NUM_OF_CHILDREN )
{
/* Allocate the memory from the heap and pass it as an argument
* to each thread to avoid race condition and invalid reference
* issues with the local variables.
*/
pThreadID = (unsigned int *) malloc( sizeof( unsigned int ) );
if( pThreadID == NULL )
{
perror( "malloc" );
/* Cancel pthread operation */
return FAILURE;
}
*pThreadID = uiThdIndex;
if( pthread_create(
&ThrChild[uiThdIndex], NULL, &Child, pThreadID) != 0 )
{
printf( "pthread %d creation failed. Error: %d\n", uiThdIndex, errno);
perror( "pthread_create" );
return FAILURE;
}
uiThdIndex++;
}
/* Report thread reports the statistics of IPC communication
* between parent and childs threads.
*/
if( pthread_create( &ThrReport, NULL, &Report, NULL) != 0 )
{
perror( "pthread_create" );
return FAILURE;
}
Parent();
uiThdIndex = 0;
while( uiThdIndex < NUM_OF_CHILDREN )
{
pthread_join( ThrChild[uiThdIndex], NULL );
uiThdIndex++;
}
/*
* Cancel the report thread function when all the
* children exits.
*/
pthread_cancel( ThrReport );
DeInitSemaphore();
return SUCCESS;
}
Je doute vraiment que l'approche de la mémoire partagée puisse fonctionner.
AFAIK le sémaphore est en fait juste une poignée, valide pour le processus dans lequel il est ouvert. Les vraies informations sur le sémaphore se trouvent dans la mémoire du noyau.
Donc, utiliser la même valeur de handle dans un autre processus ne fonctionnera pas.
Oui, nous pouvons utiliser le sémaphore nommé entre les deux processus. Nous pouvons ouvrir un fichier.
snprintf(sem_open_file, 128, "/sem_16");
ret_value = sem_open((const char *)sem_open_file, 0, 0, 0);
if (ret_value == SEM_FAILED) {
/*
* No such file or directory
*/
if (errno == ENOENT) {
ret_value = sem_open((const char *)sem_open_file,
O_CREAT | O_EXCL, 0777, 1);
}
}
Et d'autres processus peuvent utiliser cela.