J'essaie de prédire les données de validation avec des modèles DL DL pré-formés et affinés. Le code suit l'exemple disponible dans le blog Keras sur "la construction de modèles de classification d'images en utilisant très peu de données ". Voici le code:
import numpy as np
from keras.preprocessing.image import ImageDataGenerator
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.models import Model
from keras.layers import Flatten, Dense
from sklearn.metrics import classification_report,confusion_matrix
from sklearn.metrics import roc_auc_score
import itertools
from keras.optimizers import SGD
from sklearn.metrics import roc_curve, auc
from keras import applications
from keras import backend as K
K.set_image_dim_ordering('tf')
# Plotting the confusion matrix
def plot_confusion_matrix(cm, classes,
normalize=False, #if true all values in confusion matrix is between 0 and 1
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j],
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
#plot data
def generate_results(validation_labels, y_pred):
fpr, tpr, _ = roc_curve(validation_labels, y_pred) ##(this implementation is restricted to a binary classification task)
roc_auc = auc(fpr, tpr)
plt.figure()
plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], 'k--')
plt.xlim([0.0, 1.05])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate (FPR)')
plt.ylabel('True Positive Rate (TPR)')
plt.title('Receiver operating characteristic (ROC) curve')
plt.show()
print('Area Under the Curve (AUC): %f' % roc_auc)
img_width, img_height = 100,100
top_model_weights_path = 'modela.h5'
train_data_dir = 'data4/train'
validation_data_dir = 'data4/validation'
nb_train_samples = 20
nb_validation_samples = 20
epochs = 50
batch_size = 10
def save_bottleneck_features():
datagen = ImageDataGenerator(rescale=1. / 255)
model = applications.VGG16(include_top=False, weights='imagenet', input_shape=(100,100,3))
generator = datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary',
shuffle=False)
bottleneck_features_train = model.predict_generator(
generator, nb_train_samples // batch_size)
np.save(open('bottleneck_features_train', 'wb'),bottleneck_features_train)
generator = datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary',
shuffle=False)
bottleneck_features_validation = model.predict_generator(
generator, nb_validation_samples // batch_size)
np.save(open('bottleneck_features_validation', 'wb'),bottleneck_features_validation)
def train_top_model():
train_data = np.load(open('bottleneck_features_train', 'rb'))
train_labels = np.array([0] * (nb_train_samples // 2) + [1] * (nb_train_samples // 2))
validation_data = np.load(open('bottleneck_features_validation', 'rb'))
validation_labels = np.array([0] * (nb_validation_samples // 2) + [1] * (nb_validation_samples // 2))
model = Sequential()
model.add(Flatten(input_shape=train_data.shape[1:]))
model.add(Dense(512, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
sgd = SGD(lr=1e-3, decay=0.00, momentum=0.99, nesterov=False)
model.compile(optimizer=sgd,
loss='binary_crossentropy', metrics=['accuracy'])
model.fit(train_data, train_labels,
epochs=epochs,
batch_size=batch_size,
validation_data=(validation_data, validation_labels))
model.save_weights(top_model_weights_path)
print('Predicting on test data')
y_pred = model.predict_classes(validation_data)
print(y_pred.shape)
print('Generating results')
generate_results(validation_labels[:,], y_pred[:,])
print('Generating the ROC_AUC_Scores') #Compute Area Under the Curve (AUC) from prediction scores
print(roc_auc_score(validation_labels,y_pred)) #this implementation is restricted to the binary classification task or multilabel classification task in label indicator format.
target_names = ['class 0(Normal)', 'class 1(Abnormal)']
print(classification_report(validation_labels,y_pred,target_names=target_names))
print(confusion_matrix(validation_labels,y_pred))
cnf_matrix = (confusion_matrix(validation_labels,y_pred))
np.set_printoptions(precision=2)
plt.figure()
# Plot non-normalized confusion matrix
plot_confusion_matrix(cnf_matrix, classes=target_names,
title='Confusion matrix')
plt.show()
save_bottleneck_features()
train_top_model()
# path to the model weights files.
weights_path = '../keras/examples/vgg16_weights.h5'
top_model_weights_path = 'modela.h5'
# dimensions of our images.
img_width, img_height = 100, 100
train_data_dir = 'data4/train'
validation_data_dir = 'data4/validation'
nb_train_samples = 20
nb_validation_samples = 20
epochs = 50
batch_size = 10
# build the VGG16 network
base_model = applications.VGG16(weights='imagenet', include_top=False, input_shape=(100,100,3))
print('Model loaded.')
train_datagen = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='binary')
top_model = Sequential()
top_model.add(Flatten(input_shape=base_model.output_shape[1:]))
top_model.add(Dense(512, activation='relu'))
top_model.add(Dense(1, activation='softmax'))
top_model.load_weights(top_model_weights_path)
model = Model(inputs=base_model.input, outputs=top_model(base_model.output))
# set the first 15 layers (up to the last conv block)
# to non-trainable (weights will not be updated)
for layer in model.layers[:15]: #up to the layer before the last convolution block
layer.trainable = False
model.summary()
# fine-tune the model
model.compile(loss='binary_crossentropy', optimizer=SGD(lr=1e-4, momentum=0.99), metrics=['accuracy'])
model.fit_generator(train_generator,
steps_per_Epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=nb_validation_samples // batch_size,
verbose=1)
model.save_weights(top_model_weights_path)
bottleneck_features_validation = model.predict_generator(validation_generator, nb_validation_samples // batch_size)
np.save(open('bottleneck_features_validation','wb'), bottleneck_features_validation)
validation_data = np.load(open('bottleneck_features_validation', 'rb'))
y_pred1 = model.predict_classes(validation_data)
Le problème est que le modèle pré-formé est formé sur les données et prédit parfaitement les classes et donne également la matrice de confusion. Alors que je procède au réglage fin du modèle, j'ai pu constater que model.predict_classes ne fonctionne pas. Voici l'erreur:
File "C:/Users/rajaramans2/codes/untitled12.py", line 220, in <module> y_pred1 = model.predict_classes(validation_data) AttributeError: 'Model' object has no attribute 'predict_classes'
Je suis confus parce que, model.predict_classes
a bien fonctionné avec le modèle pré-formé, mais pas au stade du réglage fin. La taille des données de validation est (20,1) et float32
type. Toute aide serait appréciée.
La méthode predict_classes
N'est disponible que pour la classe Sequential
(qui est la classe de votre premier modèle) mais pas pour la classe Model
(la classe de votre deuxième modèle).
Avec la classe Model
, vous pouvez utiliser la méthode predict
qui vous donnera un vecteur de probabilités puis obtiendra l'argmax de ce vecteur (avec np.argmax(y_pred1,axis=1)
).