web-dev-qa-db-fra.com

Java bibliothèque pour l'extraction de mots clés à partir du texte d'entrée

Je recherche une bibliothèque Java pour extraire les mots clés d'un bloc de texte.

Le processus devrait être le suivant:

arrêtez le nettoyage des mots -> stemming -> recherche de mots clés basés sur les informations statistiques de la langue anglaise - ce qui signifie si un mot apparaît plus de fois dans le texte qu'en anglais en termes de probabilité que s'il s'agit d'un mot clé candidat.

Existe-t-il une bibliothèque qui effectue cette tâche?

29
Shay

Voici une solution possible en utilisant Apache Lucene . Je n'ai pas utilisé la dernière version mais la .6.2 one , car c'est celle que je connais le mieux. Outre le /lucene-core-x.x.x.jar, n'oubliez pas d'ajouter le /contrib/analyzers/common/lucene-analyzers-x.x.x.jar de l'archive téléchargée vers votre projet: il contient les analyseurs spécifiques à la langue (en particulier l'anglais dans votre cas).

Notez que cela ne trouvera que les fréquences des mots de texte d'entrée en fonction de leur racine respective. La comparaison de ces fréquences avec les statistiques en langue anglaise doit être effectuée par la suite ( cette réponse peut être utile en passant).


Le modèle de données

Un mot-clé pour une tige. Différents mots peuvent avoir la même racine, d'où l'ensemble terms. La fréquence des mots clés est incrémentée chaque fois qu'un nouveau terme est trouvé (même s'il a déjà été trouvé - un ensemble supprime automatiquement les doublons).

public class Keyword implements Comparable<Keyword> {

  private final String stem;
  private final Set<String> terms = new HashSet<String>();
  private int frequency = 0;

  public Keyword(String stem) {
    this.stem = stem;
  }

  public void add(String term) {
    terms.add(term);
    frequency++;
  }

  @Override
  public int compareTo(Keyword o) {
    // descending order
    return Integer.valueOf(o.frequency).compareTo(frequency);
  }

  @Override
  public boolean equals(Object obj) {
    if (this == obj) {
      return true;
    } else if (!(obj instanceof Keyword)) {
      return false;
    } else {
      return stem.equals(((Keyword) obj).stem);
    }
  }

  @Override
  public int hashCode() {
    return Arrays.hashCode(new Object[] { stem });
  }

  public String getStem() {
    return stem;
  }

  public Set<String> getTerms() {
    return terms;
  }

  public int getFrequency() {
    return frequency;
  }

}

Utilitaires

Pour endiguer un mot:

public static String stem(String term) throws IOException {

  TokenStream tokenStream = null;
  try {

    // tokenize
    tokenStream = new ClassicTokenizer(Version.LUCENE_36, new StringReader(term));
    // stem
    tokenStream = new PorterStemFilter(tokenStream);

    // add each token in a set, so that duplicates are removed
    Set<String> stems = new HashSet<String>();
    CharTermAttribute token = tokenStream.getAttribute(CharTermAttribute.class);
    tokenStream.reset();
    while (tokenStream.incrementToken()) {
      stems.add(token.toString());
    }

    // if no stem or 2+ stems have been found, return null
    if (stems.size() != 1) {
      return null;
    }
    String stem = stems.iterator().next();
    // if the stem has non-alphanumerical chars, return null
    if (!stem.matches("[a-zA-Z0-9-]+")) {
      return null;
    }

    return stem;

  } finally {
    if (tokenStream != null) {
      tokenStream.close();
    }
  }

}

Pour rechercher dans une collection (sera utilisé par la liste des mots clés potentiels):

public static <T> T find(Collection<T> collection, T example) {
  for (T element : collection) {
    if (element.equals(example)) {
      return element;
    }
  }
  collection.add(example);
  return example;
}

Coeur

Voici la principale méthode de saisie:

public static List<Keyword> guessFromString(String input) throws IOException {

  TokenStream tokenStream = null;
  try {

    // hack to keep dashed words (e.g. "non-specific" rather than "non" and "specific")
    input = input.replaceAll("-+", "-0");
    // replace any punctuation char but apostrophes and dashes by a space
    input = input.replaceAll("[\\p{Punct}&&[^'-]]+", " ");
    // replace most common english contractions
    input = input.replaceAll("(?:'(?:[tdsm]|[vr]e|ll))+\\b", "");

    // tokenize input
    tokenStream = new ClassicTokenizer(Version.LUCENE_36, new StringReader(input));
    // to lowercase
    tokenStream = new LowerCaseFilter(Version.LUCENE_36, tokenStream);
    // remove dots from acronyms (and "'s" but already done manually above)
    tokenStream = new ClassicFilter(tokenStream);
    // convert any char to ASCII
    tokenStream = new ASCIIFoldingFilter(tokenStream);
    // remove english stop words
    tokenStream = new StopFilter(Version.LUCENE_36, tokenStream, EnglishAnalyzer.getDefaultStopSet());

    List<Keyword> keywords = new LinkedList<Keyword>();
    CharTermAttribute token = tokenStream.getAttribute(CharTermAttribute.class);
    tokenStream.reset();
    while (tokenStream.incrementToken()) {
      String term = token.toString();
      // stem each term
      String stem = stem(term);
      if (stem != null) {
        // create the keyword or get the existing one if any
        Keyword keyword = find(keywords, new Keyword(stem.replaceAll("-0", "-")));
        // add its corresponding initial token
        keyword.add(term.replaceAll("-0", "-"));
      }
    }

    // reverse sort by frequency
    Collections.sort(keywords);

    return keywords;

  } finally {
    if (tokenStream != null) {
      tokenStream.close();
    }
  }

}

Exemple

En utilisant la méthode guessFromString sur la partie d'introduction à l'article de Wikipédia Java , voici les 10 premiers mots clés les plus fréquents (c'est-à-dire les tiges) qui ont été trouvés:

Java         x12    [Java]
compil       x5     [compiled, compiler, compilers]
Sun          x5     [Sun]
develop      x4     [developed, developers]
languag      x3     [languages, language]
implement    x3     [implementation, implementations]
applic       x3     [application, applications]
run          x3     [run]
Origin       x3     [originally, original]
gnu          x3     [gnu]

Parcourez la liste de sortie pour savoir quels étaient les mots trouvés d'origine pour chaque tige en obtenant les ensembles terms (affichés entre crochets [...] dans l'exemple ci-dessus).


Et après

Comparez les ratios fréquence/fréquence de la tige avec ceux des statistiques en anglais, et tenez-moi au courant si vous y parvenez: je pourrais aussi être très intéressé :)

38
sp00m

Une version mise à jour et prête à l'emploi du code proposé ci-dessus.
Ce code est compatible avec Apache Lucene 5.x… 6.x.

CardKeyword classe:

import Java.util.HashSet;
import Java.util.Set;

/**
 * Keyword card with stem form, terms dictionary and frequency rank
 */
class CardKeyword implements Comparable<CardKeyword> {

    /**
     * Stem form of the keyword
     */
    private final String stem;

    /**
     * Terms dictionary
     */
    private final Set<String> terms = new HashSet<>();

    /**
     * Frequency rank
     */
    private int frequency;

    /**
     * Build keyword card with stem form
     *
     * @param stem
     */
    public CardKeyword(String stem) {
        this.stem = stem;
    }

    /**
     * Add term to the dictionary and update its frequency rank
     *
     * @param term
     */
    public void add(String term) {
        this.terms.add(term);
        this.frequency++;
    }

    /**
     * Compare two keywords by frequency rank
     *
     * @param keyword
     * @return int, which contains comparison results
     */
    @Override
    public int compareTo(CardKeyword keyword) {
        return Integer.valueOf(keyword.frequency).compareTo(this.frequency);
    }

    /**
     * Get stem's hashcode
     *
     * @return int, which contains stem's hashcode
     */
    @Override
    public int hashCode() {
        return this.getStem().hashCode();
    }

    /**
     * Check if two stems are equal
     *
     * @param o
     * @return boolean, true if two stems are equal
     */
    @Override
    public boolean equals(Object o) {

        if (this == o) return true;

        if (!(o instanceof CardKeyword)) return false;

        CardKeyword that = (CardKeyword) o;

        return this.getStem().equals(that.getStem());
    }

    /**
     * Get stem form of keyword
     *
     * @return String, which contains getStemForm form
     */
    public String getStem() {
        return this.stem;
    }

    /**
     * Get terms dictionary of the stem
     *
     * @return Set<String>, which contains set of terms of the getStemForm
     */
    public Set<String> getTerms() {
        return this.terms;
    }

    /**
     * Get stem frequency rank
     *
     * @return int, which contains getStemForm frequency
     */
    public int getFrequency() {
        return this.frequency;
    }
}

KeywordsExtractor classe:

import org.Apache.lucene.analysis.TokenStream;
import org.Apache.lucene.analysis.core.LowerCaseFilter;
import org.Apache.lucene.analysis.core.StopFilter;
import org.Apache.lucene.analysis.en.EnglishAnalyzer;
import org.Apache.lucene.analysis.en.PorterStemFilter;
import org.Apache.lucene.analysis.miscellaneous.ASCIIFoldingFilter;
import org.Apache.lucene.analysis.standard.ClassicFilter;
import org.Apache.lucene.analysis.standard.StandardTokenizer;
import org.Apache.lucene.analysis.tokenattributes.CharTermAttribute;

import Java.io.IOException;
import Java.io.StringReader;
import Java.util.*;

/**
 * Keywords extractor functionality handler
 */
class KeywordsExtractor {

    /**
     * Get list of keywords with stem form, frequency rank, and terms dictionary
     *
     * @param fullText
     * @return List<CardKeyword>, which contains keywords cards
     * @throws IOException
     */
    static List<CardKeyword> getKeywordsList(String fullText) throws IOException {

        TokenStream tokenStream = null;

        try {
            // treat the dashed words, don't let separate them during the processing
            fullText = fullText.replaceAll("-+", "-0");

            // replace any punctuation char but apostrophes and dashes with a space
            fullText = fullText.replaceAll("[\\p{Punct}&&[^'-]]+", " ");

            // replace most common English contractions
            fullText = fullText.replaceAll("(?:'(?:[tdsm]|[vr]e|ll))+\\b", "");

            StandardTokenizer stdToken = new StandardTokenizer();
            stdToken.setReader(new StringReader(fullText));

            tokenStream = new StopFilter(new ASCIIFoldingFilter(new ClassicFilter(new LowerCaseFilter(stdToken))), EnglishAnalyzer.getDefaultStopSet());
            tokenStream.reset();

            List<CardKeyword> cardKeywords = new LinkedList<>();

            CharTermAttribute token = tokenStream.getAttribute(CharTermAttribute.class);

            while (tokenStream.incrementToken()) {

                String term = token.toString();
                String stem = getStemForm(term);

                if (stem != null) {
                    CardKeyword cardKeyword = find(cardKeywords, new CardKeyword(stem.replaceAll("-0", "-")));
                    // treat the dashed words back, let look them pretty
                    cardKeyword.add(term.replaceAll("-0", "-"));
                }
            }

            // reverse sort by frequency
            Collections.sort(cardKeywords);

            return cardKeywords;
        } finally {
            if (tokenStream != null) {
                try {
                    tokenStream.close();
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
        }
    }

    /**
     * Get stem form of the term
     *
     * @param term
     * @return String, which contains the stemmed form of the term
     * @throws IOException
     */
    private static String getStemForm(String term) throws IOException {

        TokenStream tokenStream = null;

        try {
            StandardTokenizer stdToken = new StandardTokenizer();
            stdToken.setReader(new StringReader(term));

            tokenStream = new PorterStemFilter(stdToken);
            tokenStream.reset();

            // eliminate duplicate tokens by adding them to a set
            Set<String> stems = new HashSet<>();

            CharTermAttribute token = tokenStream.getAttribute(CharTermAttribute.class);

            while (tokenStream.incrementToken()) {
                stems.add(token.toString());
            }

            // if stem form was not found or more than 2 stems have been found, return null
            if (stems.size() != 1) {
                return null;
            }

            String stem = stems.iterator().next();

            // if the stem form has non-alphanumerical chars, return null
            if (!stem.matches("[a-zA-Z0-9-]+")) {
                return null;
            }

            return stem;
        } finally {
            if (tokenStream != null) {
                try {
                    tokenStream.close();
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
        }
    }

    /**
     * Find sample in collection
     *
     * @param collection
     * @param sample
     * @param <T>
     * @return <T> T, which contains the found object within collection if exists, otherwise the initially searched object
     */
    private static <T> T find(Collection<T> collection, T sample) {

        for (T element : collection) {
            if (element.equals(sample)) {
                return element;
            }
        }

        collection.add(sample);

        return sample;
    }
}

L'appel de fonction:

String text = "…";
List<CardKeyword> keywordsList = KeywordsExtractor.getKeywordsList(text);
5
Mike B.