J'ai essayé de résoudre la tâche ci-dessous:
Vous avez N compteurs, réglés initialement à 0, et vous avez deux opérations possibles sur eux:
increase(X) − counter X is increased by 1,
max_counter − all counters are set to the maximum value of any counter.
Un tableau non vide à indice A de M entiers est donné. Ce tableau représente des opérations consécutives:
if A[K] = X, such that 1 ≤ X ≤ N, then operation K is increase(X),
if A[K] = N + 1 then operation K is max_counter.
Par exemple, étant donné le nombre entier N = 5 et le tableau A tel que:
A[0] = 3
A[1] = 4
A[2] = 4
A[3] = 6
A[4] = 1
A[5] = 4
A[6] = 4
les valeurs des compteurs après chaque opération consécutive seront:
(0, 0, 1, 0, 0)
(0, 0, 1, 1, 0)
(0, 0, 1, 2, 0)
(2, 2, 2, 2, 2)
(3, 2, 2, 2, 2)
(3, 2, 2, 3, 2)
(3, 2, 2, 4, 2)
L'objectif est de calculer la valeur de chaque compteur après toutes les opérations.
struct Results {
int * C;
int L;
};
Ecrire une fonction:
struct Results solution(int N, int A[], int M);
que, étant donné un entier N et un tableau A non indexé non vide A constitué de M entiers, retourne une séquence d'entiers représentant les valeurs des compteurs.
La séquence doit être retournée comme:
a structure Results (in C), or
a vector of integers (in C++), or
a record Results (in Pascal), or
an array of integers (in any other programming language).
Par exemple, étant donné:
A[0] = 3
A[1] = 4
A[2] = 4
A[3] = 6
A[4] = 1
A[5] = 4
A[6] = 4
la fonction devrait renvoyer [3, 2, 2, 4, 2], comme expliqué ci-dessus.
Suppose que:
N and M are integers within the range [1..100,000];
each element of array A is an integer within the range [1..N + 1].
Complexité:
expected worst-case time complexity is O(N+M);
expected worst-case space complexity is O(N), beyond input storage (not counting the storage required for input arguments).
Les éléments des tableaux d'entrée peuvent être modifiés.
Voici ma solution:
import Java.util.Arrays;
class Solution {
public int[] solution(int N, int[] A) {
final int condition = N + 1;
int currentMax = 0;
int countersArray[] = new int[N];
for (int iii = 0; iii < A.length; iii++) {
int currentValue = A[iii];
if (currentValue == condition) {
Arrays.fill(countersArray, currentMax);
} else {
int position = currentValue - 1;
int localValue = countersArray[position] + 1;
countersArray[position] = localValue;
if (localValue > currentMax) {
currentMax = localValue;
}
}
}
return countersArray;
}
}
Voici la valorisation du code: https://codility.com/demo/results/demo6AKE5C-EJQ/
Pouvez-vous me donner un indice de ce qui ne va pas avec cette solution?
Le problème vient avec ce morceau de code:
for (int iii = 0; iii < A.length; iii++) {
...
if (currentValue == condition) {
Arrays.fill(countersArray, currentMax);
}
...
}
Imaginons que chaque élément du tableau A
a été initialisé avec la valeur N+1
. Puisque l'appel de fonction Arrays.fill(countersArray, currentMax)
a une complexité temporelle de O(N)
, votre algorithme aura globalement une complexité temporelle O(M * N)
. Un moyen de résoudre ce problème, je pense, au lieu de mettre à jour explicitement le tableau entier A
lorsque l'opération max_counter
est appelée, vous pouvez conserver la valeur de la dernière mise à jour en tant que variable. Lorsque la première opération (incrémentation) est appelée, vous voyez simplement si la valeur que vous essayez d’incrémenter est supérieure à last_update
. Si c'est le cas, il vous suffit de mettre à jour la valeur avec 1, sinon vous l'initialisez à last_update + 1
. Lorsque la deuxième opération est appelée, il suffit de mettre à jour last_update
en current_max
. Et enfin, lorsque vous avez terminé et essayez de renvoyer les valeurs finales, vous comparez chaque valeur à last_update
. S'il est supérieur, vous conservez simplement la valeur, sinon vous retournez last_update
class Solution {
public int[] solution(int N, int[] A) {
final int condition = N + 1;
int currentMax = 0;
int lastUpdate = 0;
int countersArray[] = new int[N];
for (int iii = 0; iii < A.length; iii++) {
int currentValue = A[iii];
if (currentValue == condition) {
lastUpdate = currentMax
} else {
int position = currentValue - 1;
if (countersArray[position] < lastUpdate)
countersArray[position] = lastUpdate + 1;
else
countersArray[position]++;
if (countersArray[position] > currentMax) {
currentMax = countersArray[position];
}
}
}
for (int iii = 0; iii < N; iii++)
if (countersArray[iii] < lastUpdate)
countersArray[iii] = lastUpdate;
return countersArray;
}
}
Le problème est que lorsque vous avez beaucoup d'opérations max_counter
, vous recevez beaucoup d'appels à Arrays.fill
, ce qui ralentit votre solution.
Vous devriez garder une currentMax
et une currentMin
:
max_counter
, définissez simplement currentMin = currentMax
.i
: i - 1
est inférieure ou égale à currentMin
, définissez-la sur currentMin + 1
.À la fin, parcourez à nouveau le tableau counters et définissez tout ce qui est inférieur à currentMin
à currentMin
.
Une autre solution que j’ai développée et qui mérite d’être envisagée: http://codility.com/demo/results/demoM658NU-DYR/
C'est la solution à 100% de cette question.
// you can also use imports, for example:
// import Java.math.*;
class Solution {
public int[] solution(int N, int[] A) {
int counter[] = new int[N];
int n = A.length;
int max=-1,current_min=0;
for(int i=0;i<n;i++){
if(A[i]>=1 && A[i]<= N){
if(counter[A[i] - 1] < current_min) counter[A[i] - 1] = current_min;
counter[A[i] - 1] = counter[A[i] - 1] + 1;
if(counter[A[i] - 1] > max) max = counter[A[i] - 1];
}
else if(A[i] == N+1){
current_min = max;
}
}
for(int i=0;i<N;i++){
if(counter[i] < current_min) counter[i] = current_min;
}
return counter;
}
}
Voici ma solution C++ qui en a 100 sur la codilité. Le concept est le même que celui expliqué ci-dessus.
int maxx=0;
int lastvalue=0;
void set(vector<int>& A, int N,int X)
{
for ( int i=0;i<N;i++)
if(A[i]<lastvalue)
A[i]=lastvalue;
}
vector<int> solution(int N, vector<int> &A) {
// write your code in C++11
vector<int> B(N,0);
for(unsigned int i=0;i<A.size();i++)
{
if(A[i]==N+1)
lastvalue=maxx;
else
{ if(B[A[i]-1]<lastvalue)
B[A[i]-1]=lastvalue+1;
else
B[A[i]-1]++;
if(B[A[i]-1]>maxx)
maxx=B[A[i]-1];
}
}
set(B,N,maxx);
return B;
}
Voici ma solution en utilisant python 3.6. Le résultat est 100% d’exactitude mais 40% de performance (la plupart d’entre elles étant dues au timeout). Vous ne savez toujours pas comment optimiser ce code, mais j'espère que quelqu'un pourra le trouver utile.
def solution(N, A):
count = [0]*(N+1)
for i in range(0,len(A)):
if A[i] >=1 and A[i] <= N:
count[A[i]] += 1
Elif A[i] == (N+1):
count = [max(count)] * len(count)
count.pop(0)
return count
100%, O (m + n)
public int[] solution(int N, int[] A) {
int[] counters = new int[N];
int maxAIs = 0;
int minAShouldBe = 0;
for(int x : A) {
if(x >= 1 && x <= N) {
if(counters[x-1] < minAShouldBe) {
counters[x-1] = minAShouldBe;
}
counters[x-1]++;
if(counters[x-1] > maxAIs) {
maxAIs = counters[x-1];
}
} else if(x == N+1) {
minAShouldBe = maxAIs;
}
}
for(int i = 0; i < N; i++) {
if(counters[i] < minAShouldBe) {
counters[i] = minAShouldBe;
}
}
return counters;
}
def sample_method(A,N=5):
initial_array = [0,0,0,0,0]
for i in A:
if(i>=1):
if(i<=N):
initial_array[i-1]+=1
else:
for a in range(len(initial_array)):
initial_array[a]+=1
print i
print initial_array
voici mon code, mais c'est 88% parce qu'il faut 3,80 secondes pour 10000 éléments au lieu de 2.20
class Solution {
boolean maxCalled;
public int[] solution(int N, int[] A) {
int max =0;
int [] counters = new int [N];
int temp=0;
int currentVal = 0;
for(int i=0;i<A.length;i++){
currentVal = A[i];
if(currentVal <=N){
temp = increas(counters,currentVal);
if(temp > max){
max = temp;
}
}else{
if(!maxCalled)
maxCounter(counters,max);
}
}
return counters;
}
int increas (int [] A, int x){
maxCalled = false;
return ++A[x-1];
//return t;
}
void maxCounter (int [] A, int x){
maxCalled = true;
for (int i = 0; i < A.length; i++) {
A[i] = x;
}
}
}
Hera est ma solution Java AC. L'idée est la même que celle expliquée par @Inwvr:
public int[] solution(int N, int[] A) {
int[] count = new int[N];
int max = 0;
int lastUpdate = 0;
for(int i = 0; i < A.length; i++){
if(A[i] <= N){
if(count[A[i]-1] < lastUpdate){
count[A[i]-1] = lastUpdate+1;
}
else{
count[A[i]-1]++;
}
max = Math.max(max, count[A[i]-1]);
}
else{
lastUpdate = max;
}
}
for(int i = 0; i < N; i++){
if(count[i] < lastUpdate)
count[i] = lastUpdate;
}
return count;
}
Voici ma solution python:
def solution(N, A):
# write your code in Python 3.6
RESP = [0] * N
MAX_OPERATION = N + 1
current_max = 0
current_min = 0
for operation in A:
if operation != MAX_OPERATION:
if RESP[operation-1] <= current_min:
RESP[operation-1] = current_min + 1
else:
RESP[operation-1] += 1
if RESP[operation-1] > current_max:
current_max = RESP[operation-1]
else:
if current_min == current_max:
current_min += 1
else:
current_min = current_max
for i, val in enumerate(RESP):
if val < current_min:
RESP[i] = current_min
return RESP
Arrays.fill()
invocation dans l'interaction de tableau rend le programme O (N ^ 2)
Ici est une solution possible qui a un runtime O (M + N).
L'idée est -
Pour la deuxième opération, gardez la trace de la valeur maximale obtenue par incrément. Il s'agit de notre valeur de base jusqu'à l'itération actuelle. Aucune valeur ne peut être inférieure à celle-ci.
Pour la première opération, réinitialiser la valeur sur la valeur de base si nécessaire avant l'incrément.
public statique int [] solution (int N, int [] A) { int compteurs [] = new int [N];
int base = 0;
int cMax = 0;
for (int a : A) {
if (a > counters.length) {
base = cMax;
} else {
if (counters[a - 1] < base) {
counters[a - 1] = base;
}
counters[a - 1]++;
cMax = Math.max(cMax, counters[a - 1]);
}
}
for (int i = 0; i < counters.length; i++) {
if (counters[i] < base) {
counters[i] = base;
}
}
return counters;
}
Dans ma solution Java, j'ai mis à jour les valeurs de solution [] uniquement lorsque cela était nécessaire. Et enfin une solution mise à jour [] avec les bonnes valeurs.
public int[] solution(int N, int[] A) {
int[] solution = new int[N];
int maxCounter = 0;
int maxCountersSum = 0;
for(int a: A) {
if(a >= 1 && a <= N) {
if(solution[a - 1] < maxCountersSum)
solution[a - 1] = maxCountersSum;
solution[a - 1]++;
if(solution[a - 1] > maxCounter)
maxCounter = solution[a - 1];
}
if(a == N + 1) {
maxCountersSum = maxCounter;
}
}
for(int i = 0; i < N; i++) {
if(solution[i] < maxCountersSum)
solution[i] = maxCountersSum;
}
return solution;
}
J'ajoute une autre solution Java 100 avec quelques cas de test s'ils sont utiles.
// https://codility.com/demo/results/demoD8J6M5-K3T/ 77
// https://codility.com/demo/results/demoSEJHZS-ZPR/ 100
public class MaxCounters {
// Some testcases
// (1,[1,2,3]) = [1]
// (1,[1]) = [1]
// (1,[5]) = [0]
// (1,[1,1,1,2,3]) = 3
// (2,[1,1,1,2,3,1]) = [4,3]
// (5, [3, 4, 4, 5, 1, 4, 4]) = (1, 0, 1, 4, 1)
public int[] solution(int N, int[] A) {
int length = A.length, maxOfCounter = 0, lastUpdate = 0;
int applyMax = N + 1;
int result[] = new int[N];
for (int i = 0; i < length; ++i ) {
if(A[i] == applyMax){
lastUpdate = maxOfCounter;
} else if (A[i] <= N) {
int position = A[i]-1;
result[position] = result[position] > lastUpdate
? result[position] + 1 : lastUpdate + 1;
// updating the max for future use
if(maxOfCounter <= result[position]) {
maxOfCounter = result[position];
}
}
}
// updating all the values that are less than the lastUpdate to the max value
for (int i = 0; i < N; ++i) {
if(result[i] < lastUpdate) {
result[i] = lastUpdate;
}
}
return result;
}
}
Suite à ma solution en Java (100/100).
public boolean isToSum(int value, int N) {
return value >= 1 && value <= N;
}
public int[] solution(int N, int[] A) {
int[] res = new int[N];
int max =0;
int minValue = 0;
for (int i=0; i < A.length; i++){
int value = A[i];
int pos = value -1;
if ( isToSum(value, N)) {
if( res[pos] < minValue) {
res[pos] = minValue;
}
res[pos] += 1;
if (max < res[pos]) {
max = res[pos];
}
} else {
minValue = max;
}
}
for (int i=0; i < res.length; i++){
if ( res[i] < minValue ){
res[i] = minValue;
}
}
return res;
}
vector<int> solution(int N, vector<int> &A)
{
std::vector<int> counters(N);
auto max = 0;
auto current = 0;
for (auto& counter : A)
{
if (counter >= 1 && counter <= N)
{
if (counters[counter-1] < max)
counters[counter - 1] = max;
counters[counter - 1] += 1;
if (counters[counter - 1] > current)
current = counters[counter - 1];
}
else if (counter > N)
max = current;
}
for (auto&& counter : counters)
if (counter < max)
counter = max;
return counters;
}
Je viens de recevoir 100 PHP avec l'aide de ce qui précède
function solution($N, $A) {
$B = array(0);
$max = 0;
foreach($A as $key => $a) {
$a -= 1;
if($a == $N) {
$max = max($B);
} else {
if(!isset($B[$a])) {
$B[$a] = 0;
}
if($B[$a] < $max) {
$B[$a] = $max + 1;
} else {
$B[$a] ++;
}
}
}
for($i=0; $i<$N; $i++) {
if(!isset($B[$i]) || $B[$i] < $max) {
$B[$i] = $max;
}
}
return $B;
}
C'est une autre solution C++ au problème.
La logique est toujours la même.
Voici le code:
vector<int> MaxCounters(int N, vector<int> &A)
{
vector<int> n(N, 0);
int globalMax = 0;
int localMax = 0;
for( vector<int>::const_iterator it = A.begin(); it != A.end(); ++it)
{
if ( *it >= 1 && *it <= N)
{
// this is an increase op.
int value = *it - 1;
n[value] = std::max(n[value], localMax ) + 1;
globalMax = std::max(n[value], globalMax);
}
else
{
// set max counter op.
localMax = globalMax;
}
}
for( vector<int>::iterator it = n.begin(); it != n.end(); ++it)
*it = std::max( *it, localMax );
return n;
}
vector<int> solution(int N, vector<int> &A)
{
std::vector<int> counter(N, 0);
int max = 0;
int floor = 0;
for(std::vector<int>::iterator i = A.begin();i != A.end(); i++)
{
int index = *i-1;
if(*i<=N && *i >= 1)
{
if(counter[index] < floor)
counter[index] = floor;
counter[index] += 1;
max = std::max(counter[index], max);
}
else
{
floor = std::max(max, floor);
}
}
for(std::vector<int>::iterator i = counter.begin();i != counter.end(); i++)
{
if(*i < floor)
*i = floor;
}
return counter;
}
ma solution est:
public class Solution {
public int[] solution(int N, int[] A) {
int[] counters = new int[N];
int[] countersLastMaxIndexes = new int[N];
int maxValue = 0;
int fixedMaxValue = 0;
int maxIndex = 0;
for (int i = 0; i < A.length; i++) {
if (A[i] <= N) {
if (countersLastMaxIndexes[A[i] - 1] != maxIndex) {
counters[A[i] - 1] = fixedMaxValue;
countersLastMaxIndexes[A[i] - 1] = maxIndex;
}
counters[A[i] - 1]++;
if (counters[A[i] - 1] > maxValue) {
maxValue = counters[A[i] - 1];
}
} else {
maxIndex = i;
fixedMaxValue = maxValue;
}
}
for (int i = 0; i < countersLastMaxIndexes.length; i++) {
if (countersLastMaxIndexes[i] != maxIndex) {
counters[i] = fixedMaxValue;
countersLastMaxIndexes[i] = maxIndex;
}
}
return counters;
}
}