La PNL de Stanford, démo'd here , donne un résultat comme celui-ci:
Colorless/JJ green/JJ ideas/NNS sleep/VBP furiously/RB ./.
Que signifient les balises Part of Speech? Je suis incapable de trouver une liste officielle. Est-ce le système de Stanford ou utilise-t-il des balises universelles? (Qu'est-ce que JJ
, par exemple?)
De plus, lorsque je parcours les phrases et que je cherche des noms, par exemple, je finis par vérifier, par exemple, si la balise .contains('N')
. Cela semble assez faible. Existe-t-il un meilleur moyen de rechercher par programme une certaine partie du discours?
Le projet Penn Treebank . Regardez le Marquage de partie de la parole ps.
JJ est un adjectif. NNS est un nom, pluriel. VBP est le présent du verbe. RB est un adverbe.
C'est pour l'anglais. Pour les Chinois, il s'agit de la Penn Chinese Treebank. Et pour l’allemand, c’est le corpus NEGRA.
- Conjonction de coordination du CC
- CD numéro cardinal
- DT Détermineur
- EX existentielle là
- FW mot étranger
- PREPOSITION OU CONJONCTURE SUBORDONNANTE
- JJ Adjectif
- JJR Adjectif, comparatif
- JJS Adjectif, superlatif
- Marqueur d'élément de liste LS
- MD modal
- NN Nom, singulier ou masse
- NNS Nom, pluriel
- NNP Nom propre, singulier
- NNPS Nom propre, pluriel
- PDT Predeterminer
- POS Possession finale
- PRP Pronom personnel
- PRP $ pronom possessif
- Adverb RB
- Adverb RBR, comparatif
- Adverb RBS, superlatif
- Particule RP
- Symbole SYM
- TO à
- UH Interjection
- VB Verb, forme de base
- VBD Verb, passé
- VBG Verbe, Participe présent ou présent
- VBN Verbe, participe passé
- VBP Verb, personne non singulière présente
- VBZ Verb, 3ème personne du singulier du présent
- WDT Whdeterminer
- WP Whpronoun
- WP $ possessif whpronoun
- WRB Whadverb
Explanation of each tag from the documentation :
CC: conjunction, coordinating
& 'n and both but either et for less minus neither nor or plus so
therefore times v. versus vs. whether yet
CD: numeral, cardinal
mid-1890 nine-thirty forty-two one-tenth ten million 0.5 one forty-
seven 1987 twenty '79 zero two 78-degrees eighty-four IX '60s .025
fifteen 271,124 dozen quintillion DM2,000 ...
DT: determiner
all an another any both del each either every half la many much nary
neither no some such that the them these this those
EX: existential there
there
FW: foreign Word
gemeinschaft hund ich jeux habeas Haementeria Herr K'ang-si vous
lutihaw alai je jour objets salutaris fille quibusdam pas trop Monte
terram fiche oui corporis ...
IN: preposition or conjunction, subordinating
astride among uppon whether out inside pro despite on by throughout
below within for towards near behind atop around if like until below
next into if beside ...
JJ: adjective or numeral, ordinal
third ill-mannered pre-war regrettable oiled calamitous first separable
ectoplasmic battery-powered participatory fourth still-to-be-named
multilingual multi-disciplinary ...
JJR: adjective, comparative
bleaker braver breezier briefer brighter brisker broader bumper busier
calmer cheaper choosier cleaner clearer closer colder commoner costlier
cozier creamier crunchier cuter ...
JJS: adjective, superlative
calmest cheapest choicest classiest cleanest clearest closest commonest
corniest costliest crassest creepiest crudest cutest darkest deadliest
dearest deepest densest dinkiest ...
LS: list item marker
A A. B B. C C. D E F First G H I J K One SP-44001 SP-44002 SP-44005
SP-44007 Second Third Three Two * a b c d first five four one six three
two
MD: modal auxiliary
can cannot could couldn't dare may might must need ought shall should
shouldn't will would
NN: noun, common, singular or mass
common-carrier cabbage knuckle-duster Casino afghan shed thermostat
investment slide humour falloff slick wind hyena override subhumanity
machinist ...
NNS: noun, common, plural
undergraduates scotches bric-a-brac products bodyguards facets coasts
divestitures storehouses designs clubs fragrances averages
subjectivists apprehensions muses factory-jobs ...
NNP: noun, proper, singular
Motown Venneboerger Czestochwa Ranzer Conchita Trumplane Christos
Oceanside Escobar Kreisler Sawyer Cougar Yvette Ervin ODI Darryl CTCA
Shannon A.K.C. Meltex Liverpool ...
NNPS: noun, proper, plural
Americans Americas Amharas Amityvilles Amusements Anarcho-Syndicalists
Andalusians Andes Andruses Angels Animals Anthony Antilles Antiques
Apache Apaches Apocrypha ...
PDT: pre-determiner
all both half many quite such sure this
POS: genitive marker
' 's
PRP: pronoun, personal
hers herself him himself hisself it itself me myself one oneself ours
ourselves ownself self she thee theirs them themselves they thou thy us
PRP$: pronoun, possessive
her his mine my our ours their thy your
RB: adverb
occasionally unabatingly maddeningly adventurously professedly
stirringly prominently technologically magisterially predominately
swiftly fiscally pitilessly ...
RBR: adverb, comparative
further gloomier grander graver greater grimmer harder harsher
healthier heavier higher however larger later leaner lengthier less-
perfectly lesser lonelier longer louder lower more ...
RBS: adverb, superlative
best biggest bluntest earliest farthest first furthest hardest
heartiest highest largest least less most nearest second tightest worst
RP: particle
aboard about across along apart around aside at away back before behind
by crop down ever fast for forth from go high i.e. in into just later
low more off on open out over per pie raising start teeth that through
under unto up up-pp upon whole with you
SYM: symbol
% & ' '' ''. ) ). * + ,. < = > @ A[fj] U.S U.S.S.R * ** ***
TO: "to" as preposition or infinitive marker
to
UH: interjection
Goodbye Goody Gosh Wow Jeepers Jee-sus Hubba Hey Kee-reist Oops amen
huh howdy uh dammit whammo shucks heck anyways whodunnit honey golly
man baby diddle hush sonuvabitch ...
VB: verb, base form
ask assemble assess assign assume atone attention avoid bake balkanize
bank begin behold believe bend benefit bevel beware bless boil bomb
boost brace break bring broil brush build ...
VBD: verb, past tense
dipped pleaded swiped regummed soaked tidied convened halted registered
cushioned exacted snubbed strode aimed adopted belied figgered
speculated wore appreciated contemplated ...
VBG: verb, present participle or gerund
telegraphing stirring focusing angering judging stalling lactating
hankerin' alleging veering capping approaching traveling besieging
encrypting interrupting erasing wincing ...
VBN: verb, past participle
multihulled dilapidated aerosolized chaired languished panelized used
experimented flourished imitated reunifed factored condensed sheared
unsettled primed dubbed desired ...
VBP: verb, present tense, not 3rd person singular
predominate wrap resort sue twist spill cure lengthen brush terminate
appear tend stray glisten obtain comprise detest tease attract
emphasize mold postpone sever return wag ...
VBZ: verb, present tense, 3rd person singular
bases reconstructs marks mixes displeases seals carps weaves snatches
slumps stretches authorizes smolders pictures emerges stockpiles
seduces fizzes uses bolsters slaps speaks pleads ...
WDT: WH-determiner
that what whatever which whichever
WP: WH-pronoun
that what whatever whatsoever which who whom whosoever
WP$: WH-pronoun, possessive
whose
WRB: Wh-adverb
how however whence whenever where whereby whereever wherein whereof why
La réponse acceptée ci-dessus manque les informations suivantes:
Il existe également 9 balises de ponctuation définies (qui ne figurent pas dans certaines références, voir here ). Ceux-ci sont:
Voici une liste plus complète de balises pour Penn Treebank (publié ici pour des raisons d'exhaustivité):
http://www.surdeanu.info/mihai/teaching/ista555-fall13/readings/PennTreebankConstituents.html
Il comprend également des balises pour les niveaux de clause et de phrase.
- S
- SBAR
- SBARQ
- SINV
- SQ
- ADJP
- ADVP
- CONJP
- FRAG
- INTJ
- LST
- NAC
- NP
- NX
- PP
- PRN
- PRT
- QP
- RRC
- UCP
- VP
- WHADJP
- WHAVP
- WHNP
- WHPP
- X
(descriptions dans le lien)
Juste au cas où vous voudriez le coder ...
/**
* Represents the English parts-of-speech, encoded using the
* de facto <a href="http://www.cis.upenn.edu/~treebank/">Penn Treebank
* Project</a> standard.
*
* @see <a href="ftp://ftp.cis.upenn.edu/pub/treebank/doc/tagguide.ps.gz">Penn Treebank Specification</a>
*/
public enum PartOfSpeech {
ADJECTIVE( "JJ" ),
ADJECTIVE_COMPARATIVE( ADJECTIVE + "R" ),
ADJECTIVE_SUPERLATIVE( ADJECTIVE + "S" ),
/* This category includes most words that end in -ly as well as degree
* words like quite, too and very, posthead modi ers like enough and
* indeed (as in good enough, very well indeed), and negative markers like
* not, n't and never.
*/
ADVERB( "RB" ),
/* Adverbs with the comparative ending -er but without a strictly comparative
* meaning, like <i>later</i> in <i>We can always come by later</i>, should
* simply be tagged as RB.
*/
ADVERB_COMPARATIVE( ADVERB + "R" ),
ADVERB_SUPERLATIVE( ADVERB + "S" ),
/* This category includes how, where, why, etc.
*/
ADVERB_WH( "W" + ADVERB ),
/* This category includes and, but, nor, or, yet (as in Y et it's cheap,
* cheap yet good), as well as the mathematical operators plus, minus, less,
* times (in the sense of "multiplied by") and over (in the sense of "divided
* by"), when they are spelled out. <i>For</i> in the sense of "because" is
* a coordinating conjunction (CC) rather than a subordinating conjunction.
*/
CONJUNCTION_COORDINATING( "CC" ),
CONJUNCTION_SUBORDINATING( "IN" ),
CARDINAL_NUMBER( "CD" ),
DETERMINER( "DT" ),
/* This category includes which, as well as that when it is used as a
* relative pronoun.
*/
DETERMINER_WH( "W" + DETERMINER ),
EXISTENTIAL_THERE( "EX" ),
FOREIGN_Word( "FW" ),
LIST_ITEM_MARKER( "LS" ),
NOUN( "NN" ),
NOUN_PLURAL( NOUN + "S" ),
NOUN_PROPER_SINGULAR( NOUN + "P" ),
NOUN_PROPER_PLURAL( NOUN + "PS" ),
PREDETERMINER( "PDT" ),
POSSESSIVE_ENDING( "POS" ),
PRONOUN_PERSONAL( "PRP" ),
PRONOUN_POSSESSIVE( "PRP$" ),
/* This category includes the wh-Word whose.
*/
PRONOUN_POSSESSIVE_WH( "WP$" ),
/* This category includes what, who and whom.
*/
PRONOUN_WH( "WP" ),
PARTICLE( "RP" ),
/* This tag should be used for mathematical, scientific and technical symbols
* or expressions that aren't English words. It should not used for any and
* all technical expressions. For instance, the names of chemicals, units of
* measurements (including abbreviations thereof) and the like should be
* tagged as nouns.
*/
SYMBOL( "SYM" ),
TO( "TO" ),
/* This category includes my (as in M y, what a gorgeous day), oh, please,
* see (as in See, it's like this), uh, well and yes, among others.
*/
INTERJECTION( "UH" ),
VERB( "VB" ),
VERB_PAST_TENSE( VERB + "D" ),
VERB_PARTICIPLE_PRESENT( VERB + "G" ),
VERB_PARTICIPLE_PAST( VERB + "N" ),
VERB_SINGULAR_PRESENT_NONTHIRD_PERSON( VERB + "P" ),
VERB_SINGULAR_PRESENT_THIRD_PERSON( VERB + "Z" ),
/* This category includes all verbs that don't take an -s ending in the
* third person singular present: can, could, (dare), may, might, must,
* ought, shall, should, will, would.
*/
VERB_MODAL( "MD" ),
/* Stanford.
*/
SENTENCE_TERMINATOR( "." );
private final String tag;
private PartOfSpeech( String tag ) {
this.tag = tag;
}
/**
* Returns the encoding for this part-of-speech.
*
* @return A string representing a Penn Treebank encoding for an English
* part-of-speech.
*/
public String toString() {
return getTag();
}
protected String getTag() {
return this.tag;
}
public static PartOfSpeech get( String value ) {
for( PartOfSpeech v : values() ) {
if( value.equals( v.getTag() ) ) {
return v;
}
}
throw new IllegalArgumentException( "Unknown part of speech: '" + value + "'." );
}
}
Je fournis la liste complète ici et donne également le lien de référence
1. CC Coordinating conjunction
2. CD Cardinal number
3. DT Determiner
4. EX Existential there
5. FW Foreign Word
6. IN Preposition or subordinating conjunction
7. JJ Adjective
8. JJR Adjective, comparative
9. JJS Adjective, superlative
10. LS List item marker
11. MD Modal
12. NN Noun, singular or mass
13. NNS Noun, plural
14. NNP Proper noun, singular
15. NNPS Proper noun, plural
16. PDT Predeterminer
17. POS Possessive ending
18. PRP Personal pronoun
19. PRP$ Possessive pronoun
20. RB Adverb
21. RBR Adverb, comparative
22. RBS Adverb, superlative
23. RP Particle
24. SYM Symbol
25. TO to
26. UH Interjection
27. VB Verb, base form
28. VBD Verb, past tense
29. VBG Verb, gerund or present participle
30. VBN Verb, past participle
31. VBP Verb, non-3rd person singular present
32. VBZ Verb, 3rd person singular present
33. WDT Wh-determiner
34. WP Wh-pronoun
35. WP$ Possessive wh-pronoun
36. WRB Wh-adverb
Vous pouvez trouver la liste complète des balises Parts of Speech ici .
En ce qui concerne votre deuxième question concernant la recherche d’un point de vente tagué (par exemple, un nom), voici l’exemple de code que vous pouvez suivre.
public static void main(String[] args) {
Properties properties = new Properties();
properties.put("annotators", "tokenize, ssplit, pos, lemma, ner, parse");
StanfordCoreNLP pipeline = new StanfordCoreNLP(properties);
String input = "Colorless green ideas sleep furiously.";
Annotation annotation = pipeline.process(input);
List<CoreMap> sentences = annotation.get(CoreAnnotations.SentencesAnnotation.class);
List<String> output = new ArrayList<>();
String regex = "([{pos:/NN|NNS|NNP/}])"; //Noun
for (CoreMap sentence : sentences) {
List<CoreLabel> tokens = sentence.get(CoreAnnotations.TokensAnnotation.class);
TokenSequencePattern pattern = TokenSequencePattern.compile(regex);
TokenSequenceMatcher matcher = pattern.getMatcher(tokens);
while (matcher.find()) {
output.add(matcher.group());
}
}
System.out.println("Input: "+input);
System.out.println("Output: "+output);
}
La sortie est:
Input: Colorless green ideas sleep furiously.
Output: [ideas]
Ils semblent être balises Brown Corpus .
Stanford CoreNLP Tags pour autres langues: français, espagnol, allemand ...
Je vois que vous utilisez l'analyseur syntaxique pour l'anglais, qui est le modèle par défaut. Vous pouvez utiliser l'analyseur pour d'autres langues (français, espagnol, allemand ...) et, soyez conscient, les tokenizers et une partie des balises de la parole sont différents pour chaque langue. Si vous souhaitez effectuer cette opération, vous devez télécharger le modèle spécifique à la langue (à l'aide d'un générateur tel que Maven, par exemple), puis définir le modèle que vous souhaitez utiliser. Ici vous avez plus d'informations à ce sujet.
Ici vous êtes des listes de tags pour différentes langues:
MOTS-CLÉS POUR FRANÇAIS:
Partie des étiquettes de parole en français
A (adjective)
Adv (adverb)
CC (coordinating conjunction)
Cl (weak clitic pronoun)
CS (subordinating conjunction)
D (determiner)
ET (foreign Word)
I (interjection)
NC (common noun)
NP (proper noun)
P (preposition)
PREF (prefix)
PRO (strong pronoun)
V (verb)
PONCT (punctuation mark)
Catégories de balises Tags pour le français:
AP (adjectival phrases)
AdP (adverbial phrases)
COORD (coordinated phrases)
NP (noun phrases)
PP (prepositional phrases)
VN (verbal nucleus)
VPinf (infinitive clauses)
VPpart (nonfinite clauses)
SENT (sentences)
Sint, Srel, Ssub (finite clauses)
Fonctions syntaxiques pour le français:
SUJ (subject)
OBJ (direct object)
ATS (predicative complement of a subject)
ATO (predicative complement of a direct object)
MOD (modifier or adjunct)
A-OBJ (indirect complement introduced by à)
DE-OBJ (indirect complement introduced by de)
P-OBJ (indirect complement introduced by another preposition)