Y a-t-il une raison technique pour laquelle spark 2.3 ne fonctionne pas avec Java 1.10 (à partir de juillet 2018)?
Voici la sortie lorsque j'exécute l'exemple SparkPi en utilisant spark-submit
.
$ ./bin/spark-submit ./examples/src/main/python/pi.py
WARNING: An illegal reflective access operation has occurred
WARNING: Illegal reflective access by org.Apache.hadoop.security.authentication.util.KerberosUtil to method Sun.security.krb5.Config.getInstance()
WARNING: Please consider reporting this to the maintainers of org.Apache.hadoop.security.authentication.util.KerberosUtil
WARNING: Use --illegal-access=warn to enable warnings of further illegal reflective access operations
WARNING: All illegal access operations will be denied in a future release
2018-07-13 14:31:30 WARN NativeCodeLoader:62 - Unable to load native-hadoop library for your platform... using builtin-Java classes where applicable
2018-07-13 14:31:31 INFO SparkContext:54 - Running Spark version 2.3.1
2018-07-13 14:31:31 INFO SparkContext:54 - Submitted application: PythonPi
2018-07-13 14:31:31 INFO Utils:54 - Successfully started service 'sparkDriver' on port 58681.
2018-07-13 14:31:31 INFO SparkEnv:54 - Registering MapOutputTracker
2018-07-13 14:31:31 INFO SparkEnv:54 - Registering BlockManagerMaster
2018-07-13 14:31:31 INFO BlockManagerMasterEndpoint:54 - Using org.Apache.spark.storage.DefaultTopologyMapper for getting topology information
2018-07-13 14:31:31 INFO BlockManagerMasterEndpoint:54 - BlockManagerMasterEndpoint up
2018-07-13 14:31:31 INFO DiskBlockManager:54 - Created local directory at /private/var/folders/mp/9hp4l4md4dqgmgyv7g58gbq0ks62rk/T/blockmgr-d24fab4c-c858-4cd8-9b6a-97b02aa630a5
2018-07-13 14:31:31 INFO MemoryStore:54 - MemoryStore started with capacity 434.4 MB
2018-07-13 14:31:31 INFO SparkEnv:54 - Registering OutputCommitCoordinator
...
2018-07-13 14:31:32 INFO StateStoreCoordinatorRef:54 - Registered StateStoreCoordinator endpoint
Traceback (most recent call last):
File "~/Documents/spark-2.3.1-bin-hadoop2.7/./examples/src/main/python/pi.py", line 44, in <module>
count = spark.sparkContext.parallelize(range(1, n + 1), partitions).map(f).reduce(add)
File "~/Documents/spark-2.3.1-bin-hadoop2.7/python/lib/pyspark.Zip/pyspark/rdd.py", line 862, in reduce
File "~/Documents/spark-2.3.1-bin-hadoop2.7/python/lib/pyspark.Zip/pyspark/rdd.py", line 834, in collect
File "~/Documents/spark-2.3.1-bin-hadoop2.7/python/lib/py4j-0.10.7-src.Zip/py4j/Java_gateway.py", line 1257, in __call__
File "~/Documents/spark-2.3.1-bin-hadoop2.7/python/lib/pyspark.Zip/pyspark/sql/utils.py", line 63, in deco
File "~/Documents/spark-2.3.1-bin-hadoop2.7/python/lib/py4j-0.10.7-src.Zip/py4j/protocol.py", line 328, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling z:org.Apache.spark.api.python.PythonRDD.collectAndServe.
: Java.lang.IllegalArgumentException
at org.Apache.xbean.asm5.ClassReader.<init>(Unknown Source)
at org.Apache.xbean.asm5.ClassReader.<init>(Unknown Source)
at org.Apache.xbean.asm5.ClassReader.<init>(Unknown Source)
at org.Apache.spark.util.ClosureCleaner$.getClassReader(ClosureCleaner.scala:46)
at org.Apache.spark.util.FieldAccessFinder$$anon$3$$anonfun$visitMethodInsn$2.apply(ClosureCleaner.scala:449)
at org.Apache.spark.util.FieldAccessFinder$$anon$3$$anonfun$visitMethodInsn$2.apply(ClosureCleaner.scala:432)
at scala.collection.TraversableLike$WithFilter$$anonfun$foreach$1.apply(TraversableLike.scala:733)
at scala.collection.mutable.HashMap$$anon$1$$anonfun$foreach$2.apply(HashMap.scala:103)
at scala.collection.mutable.HashMap$$anon$1$$anonfun$foreach$2.apply(HashMap.scala:103)
at scala.collection.mutable.HashTable$class.foreachEntry(HashTable.scala:230)
at scala.collection.mutable.HashMap.foreachEntry(HashMap.scala:40)
at scala.collection.mutable.HashMap$$anon$1.foreach(HashMap.scala:103)
at scala.collection.TraversableLike$WithFilter.foreach(TraversableLike.scala:732)
at org.Apache.spark.util.FieldAccessFinder$$anon$3.visitMethodInsn(ClosureCleaner.scala:432)
at org.Apache.xbean.asm5.ClassReader.a(Unknown Source)
at org.Apache.xbean.asm5.ClassReader.b(Unknown Source)
at org.Apache.xbean.asm5.ClassReader.accept(Unknown Source)
at org.Apache.xbean.asm5.ClassReader.accept(Unknown Source)
at org.Apache.spark.util.ClosureCleaner$$anonfun$org$Apache$spark$util$ClosureCleaner$$clean$14.apply(ClosureCleaner.scala:262)
at org.Apache.spark.util.ClosureCleaner$$anonfun$org$Apache$spark$util$ClosureCleaner$$clean$14.apply(ClosureCleaner.scala:261)
at scala.collection.immutable.List.foreach(List.scala:381)
at org.Apache.spark.util.ClosureCleaner$.org$Apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:261)
at org.Apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:159)
at org.Apache.spark.SparkContext.clean(SparkContext.scala:2299)
at org.Apache.spark.SparkContext.runJob(SparkContext.scala:2073)
at org.Apache.spark.SparkContext.runJob(SparkContext.scala:2099)
at org.Apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:939)
at org.Apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.Apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.Apache.spark.rdd.RDD.withScope(RDD.scala:363)
at org.Apache.spark.rdd.RDD.collect(RDD.scala:938)
at org.Apache.spark.api.python.PythonRDD$.collectAndServe(PythonRDD.scala:162)
at org.Apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala)
at Java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at Java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.Java:62)
at Java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.Java:43)
at Java.base/Java.lang.reflect.Method.invoke(Method.Java:564)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.Java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.Java:357)
at py4j.Gateway.invoke(Gateway.Java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.Java:132)
at py4j.commands.CallCommand.execute(CallCommand.Java:79)
at py4j.GatewayConnection.run(GatewayConnection.Java:238)
at Java.base/Java.lang.Thread.run(Thread.Java:844)
2018-07-13 14:31:33 INFO SparkContext:54 - Invoking stop() from shutdown hook
...
J'ai résolu le problème en passant à Java8 au lieu de Java10 comme mentionné ici .
La principale raison technique est que Spark dépend fortement de l'accès direct à la mémoire native avec Sun.misc.Unsafe
, qui a été rendu privé dans Java 9.
Committer ici. C'est en fait un peu de travail à supporter Java 9+: https://issues.Apache.org/jira/browse/SPARK-24417
Il est également presque terminé et devrait être prêt pour Spark 3.0, qui devrait fonctionner sur Java 8 à 11 et au-delà).
Le but (enfin, le mien) est de le faire fonctionner sans ouvrir l'accès au module.
Les principaux problèmes sont les suivants:
Sun.misc.Unsafe
l'utilisation doit être supprimée ou contournéeSpark dépend des API de mémoire qui ont été modifiées dans JDK 9, il n'est donc pas disponible à partir de JDK 9.
Et c'est la raison de cela.
Veuillez vérifier le problème: