J'essaie de soumettre un JAR avec un travail Spark dans le cluster YARN à partir de Java. J'utilise SparkLauncher pour soumettre un exemple SparkPi:
Process spark = new SparkLauncher()
.setAppResource("C:\\spark-1.4.1-bin-hadoop2.6\\lib\\spark-examples-1.4.1-hadoop2.6.0.jar")
.setMainClass("org.Apache.spark.examples.SparkPi")
.setMaster("yarn-cluster")
.launch();
System.out.println("Waiting for finish...");
int exitCode = spark.waitFor();
System.out.println("Finished! Exit code:" + exitCode);
Il y a deux problèmes:
J'ai essayé d'exécuter l'application d'envoi avec Oracle Java 7 et 8.
J'ai obtenu de l'aide dans la liste de diffusion Spark. La clé est de lire/effacer getInputStream et getErrorStream () sur le processus. Le processus enfant peut remplir le tampon et provoquer un blocage - voir - Documents Oracle concernant le processus . Les flux doivent être lus dans des threads séparés:
Process spark = new SparkLauncher()
.setSparkHome("C:\\spark-1.4.1-bin-hadoop2.6")
.setAppResource("C:\\spark-1.4.1-bin-hadoop2.6\\lib\\spark-examples-1.4.1-hadoop2.6.0.jar")
.setMainClass("org.Apache.spark.examples.SparkPi").setMaster("yarn-cluster").launch();
InputStreamReaderRunnable inputStreamReaderRunnable = new InputStreamReaderRunnable(spark.getInputStream(), "input");
Thread inputThread = new Thread(inputStreamReaderRunnable, "LogStreamReader input");
inputThread.start();
InputStreamReaderRunnable errorStreamReaderRunnable = new InputStreamReaderRunnable(spark.getErrorStream(), "error");
Thread errorThread = new Thread(errorStreamReaderRunnable, "LogStreamReader error");
errorThread.start();
System.out.println("Waiting for finish...");
int exitCode = spark.waitFor();
System.out.println("Finished! Exit code:" + exitCode);
où la classe InputStreamReaderRunnable est:
public class InputStreamReaderRunnable implements Runnable {
private BufferedReader reader;
private String name;
public InputStreamReaderRunnable(InputStream is, String name) {
this.reader = new BufferedReader(new InputStreamReader(is));
this.name = name;
}
public void run() {
System.out.println("InputStream " + name + ":");
try {
String line = reader.readLine();
while (line != null) {
System.out.println(line);
line = reader.readLine();
}
reader.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}
Comme il s'agit d'un ancien message, je voudrais ajouter une mise à jour qui pourrait aider qui lira ce message après. Dans spark 1.6.0 il y a quelques fonctions ajoutées dans la classe SparkLauncher. Ce qui est:
def startApplication(listeners: <repeated...>[Listener]): SparkAppHandle
http://spark.Apache.org/docs/latest/api/scala/index.html#org.Apache.spark.launcher.SparkLauncher
Vous pouvez exécuter l'application sans avoir besoin de threads supplémentaires pour la peluche de gestion stdout et stderr. Il y a un bon rapport d'état de l'application en cours d'exécution. Utilisez ce code:
val env = Map(
"HADOOP_CONF_DIR" -> hadoopConfDir,
"YARN_CONF_DIR" -> yarnConfDir
)
val handler = new SparkLauncher(env.asJava)
.setSparkHome(sparkHome)
.setAppResource("Jar/location/.jar")
.setMainClass("path.to.the.main.class")
.setMaster("yarn-client")
.setConf("spark.app.id", "AppID if you have one")
.setConf("spark.driver.memory", "8g")
.setConf("spark.akka.frameSize", "200")
.setConf("spark.executor.memory", "2g")
.setConf("spark.executor.instances", "32")
.setConf("spark.executor.cores", "32")
.setConf("spark.default.parallelism", "100")
.setConf("spark.driver.allowMultipleContexts","true")
.setVerbose(true)
.startApplication()
println(handle.getAppId)
println(handle.getState)
Vous pouvez continuer à demander l'état si l'application spark jusqu'à ce qu'elle réussisse. Pour plus d'informations sur le fonctionnement du serveur de lancement Spark dans 1.6.0. Voir ce lien) : https://github.com/Apache/spark/blob/v1.6.0/launcher/src/main/Java/org/Apache/spark/launcher/LauncherServer.Java
J'ai implémenté à l'aide de CountDownLatch, et cela fonctionne comme prévu. C'est pour SparkLauncher version 2.0.1 et cela fonctionne également en mode cluster de fils.
...
final CountDownLatch countDownLatch = new CountDownLatch(1);
SparkAppListener sparkAppListener = new SparkAppListener(countDownLatch);
SparkAppHandle appHandle = sparkLauncher.startApplication(sparkAppListener);
Thread sparkAppListenerThread = new Thread(sparkAppListener);
sparkAppListenerThread.start();
long timeout = 120;
countDownLatch.await(timeout, TimeUnit.SECONDS);
...
private static class SparkAppListener implements SparkAppHandle.Listener, Runnable {
private static final Log log = LogFactory.getLog(SparkAppListener.class);
private final CountDownLatch countDownLatch;
public SparkAppListener(CountDownLatch countDownLatch) {
this.countDownLatch = countDownLatch;
}
@Override
public void stateChanged(SparkAppHandle handle) {
String sparkAppId = handle.getAppId();
State appState = handle.getState();
if (sparkAppId != null) {
log.info("Spark job with app id: " + sparkAppId + ",\t State changed to: " + appState + " - "
+ SPARK_STATE_MSG.get(appState));
} else {
log.info("Spark job's state changed to: " + appState + " - " + SPARK_STATE_MSG.get(appState));
}
if (appState != null && appState.isFinal()) {
countDownLatch.countDown();
}
}
@Override
public void infoChanged(SparkAppHandle handle) {}
@Override
public void run() {}
}