web-dev-qa-db-fra.com

Comment rendre TensorFlow + Keras rapide avec un ensemble de données TFRecord?

Quel est un exemple d'utilisation d'un TensorFlow TFRecord avec un modèle Keras et tf.session.run () tout en conservant l'ensemble de données dans les tenseurs avec les coureurs de file d'attente?

Ci-dessous, un extrait qui fonctionne mais qui nécessite les améliorations suivantes:

  • Utilisez Model API
  • spécifier une entrée ()
  • Charger un jeu de données à partir d'un enregistrement TFR
  • Parcourez un ensemble de données en parallèle (comme avec un queuerunner)

Voici l'extrait, il y a plusieurs lignes TODO indiquant ce qui est nécessaire:

from keras.models import Model
import tensorflow as tf
from keras import backend as K
from keras.layers import Dense, Input
from keras.objectives import categorical_crossentropy
from tensorflow.examples.tutorials.mnist import input_data

sess = tf.Session()
K.set_session(sess)

# Can this be done more efficiently than placeholders w/ TFRecords?
img = tf.placeholder(tf.float32, shape=(None, 784))
labels = tf.placeholder(tf.float32, shape=(None, 10))

# TODO: Use Input() 
x = Dense(128, activation='relu')(img)
x = Dense(128, activation='relu')(x)
preds = Dense(10, activation='softmax')(x)
# TODO: Construct model = Model(input=inputs, output=preds)

loss = tf.reduce_mean(categorical_crossentropy(labels, preds))

# TODO: handle TFRecord data, is it the same?
mnist_data = input_data.read_data_sets('MNIST_data', one_hot=True)

train_step = tf.train.GradientDescentOptimizer(0.5).minimize(loss)

sess.run(tf.global_variables_initializer())

# TODO remove default, add queuerunner
with sess.as_default():
    for i in range(1000):
        batch = mnist_data.train.next_batch(50)
        train_step.run(feed_dict={img: batch[0],
                                  labels: batch[1]})
    print(loss.eval(feed_dict={img:    mnist_data.test.images, 
                               labels: mnist_data.test.labels}))

Pourquoi cette question est-elle pertinente?

Voici quelques informations de démarrage pour un exemple de problème de segmentation sémantique:

19
Andrew Hundt

Mise à jour 2018-08-29 ceci est maintenant directement pris en charge dans les keras, voir l'exemple suivant:

https://github.com/keras-team/keras/blob/master/examples/mnist_tfrecord.py

Réponse originale:

Les enregistrements TFR sont pris en charge en utilisant une perte externe. Voici les lignes clés construisant une perte externe:

# tf yield ops that supply dataset images and labels
x_train_batch, y_train_batch = read_and_decode_recordinput(...)

# create a basic cnn
x_train_input = Input(tensor=x_train_batch)
x_train_out = cnn_layers(x_train_input)

model = Model(inputs=x_train_input, outputs=x_train_out)
loss = keras.losses.categorical_crossentropy(y_train_batch, x_train_out)
model.add_loss(loss)

model.compile(optimizer='rmsprop', loss=None)

Voici un exemple pour Keras 2. Il fonctionne après avoir appliqué le petit patch # 706 :

'''MNIST dataset with TensorFlow TFRecords.

Gets to 99.25% test accuracy after 12 epochs
(there is still a lot of margin for parameter tuning).
'''
import os
import copy
import time

import numpy as np

import tensorflow as tf
from tensorflow.python.ops import data_flow_ops
from keras import backend as K
from keras.models import Model
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import Flatten
from keras.layers import Input
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.callbacks import EarlyStopping
from keras.callbacks import TensorBoard
from keras.objectives import categorical_crossentropy
from keras.utils import np_utils
from keras.utils.generic_utils import Progbar
from keras import callbacks as cbks
from keras import optimizers, objectives
from keras import metrics as metrics_module

from keras.datasets import mnist

if K.backend() != 'tensorflow':
    raise RuntimeError('This example can only run with the '
                       'TensorFlow backend for the time being, '
                       'because it requires TFRecords, which '
                       'are not supported on other platforms.')


def images_to_tfrecord(images, labels, filename):
    def _int64_feature(value):
        return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))

    def _bytes_feature(value):
        return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))

    """ Save data into TFRecord """
    if not os.path.isfile(filename):
        num_examples = images.shape[0]

        rows = images.shape[1]
        cols = images.shape[2]
        depth = images.shape[3]

        print('Writing', filename)
        writer = tf.python_io.TFRecordWriter(filename)
        for index in range(num_examples):
            image_raw = images[index].tostring()
            example = tf.train.Example(features=tf.train.Features(feature={
                'height': _int64_feature(rows),
                'width': _int64_feature(cols),
                'depth': _int64_feature(depth),
                'label': _int64_feature(int(labels[index])),
                'image_raw': _bytes_feature(image_raw)}))
            writer.write(example.SerializeToString())
        writer.close()
    else:
        print('tfrecord %s already exists' % filename)


def read_and_decode_recordinput(tf_glob, one_hot=True, classes=None, is_train=None,
                                batch_shape=[1000, 28, 28, 1], parallelism=1):
    """ Return tensor to read from TFRecord """
    print 'Creating graph for loading %s TFRecords...' % tf_glob
    with tf.variable_scope("TFRecords"):
        record_input = data_flow_ops.RecordInput(
            tf_glob, batch_size=batch_shape[0], parallelism=parallelism)
        records_op = record_input.get_yield_op()
        records_op = tf.split(records_op, batch_shape[0], 0)
        records_op = [tf.reshape(record, []) for record in records_op]
        progbar = Progbar(len(records_op))

        images = []
        labels = []
        for i, serialized_example in enumerate(records_op):
            progbar.update(i)
            with tf.variable_scope("parse_images", reuse=True):
                features = tf.parse_single_example(
                    serialized_example,
                    features={
                        'label': tf.FixedLenFeature([], tf.int64),
                        'image_raw': tf.FixedLenFeature([], tf.string),
                    })
                img = tf.decode_raw(features['image_raw'], tf.uint8)
                img.set_shape(batch_shape[1] * batch_shape[2])
                img = tf.reshape(img, [1] + batch_shape[1:])

                img = tf.cast(img, tf.float32) * (1. / 255) - 0.5

                label = tf.cast(features['label'], tf.int32)
                if one_hot and classes:
                    label = tf.one_hot(label, classes)

                images.append(img)
                labels.append(label)

        images = tf.parallel_stack(images, 0)
        labels = tf.parallel_stack(labels, 0)
        images = tf.cast(images, tf.float32)

        images = tf.reshape(images, shape=batch_shape)

        # StagingArea will store tensors
        # across multiple steps to
        # speed up execution
        images_shape = images.get_shape()
        labels_shape = labels.get_shape()
        copy_stage = data_flow_ops.StagingArea(
            [tf.float32, tf.float32],
            shapes=[images_shape, labels_shape])
        copy_stage_op = copy_stage.put(
            [images, labels])
        staged_images, staged_labels = copy_stage.get()

        return images, labels


def save_mnist_as_tfrecord():
    (X_train, y_train), (X_test, y_test) = mnist.load_data()
    X_train = X_train[..., np.newaxis]
    X_test = X_test[..., np.newaxis]
    images_to_tfrecord(images=X_train, labels=y_train, filename='train.mnist.tfrecord')
    images_to_tfrecord(images=X_test, labels=y_test, filename='test.mnist.tfrecord')


def cnn_layers(x_train_input):
    x = Conv2D(32, (3, 3), activation='relu', padding='valid')(x_train_input)
    x = Conv2D(64, (3, 3), activation='relu')(x)
    x = MaxPooling2D(pool_size=(2, 2))(x)
    x = Dropout(0.25)(x)
    x = Flatten()(x)
    x = Dense(128, activation='relu')(x)
    x = Dropout(0.5)(x)
    x_train_out = Dense(classes,
                        activation='softmax',
                        name='x_train_out')(x)
    return x_train_out


sess = tf.Session()
K.set_session(sess)

save_mnist_as_tfrecord()

batch_size = 100
batch_shape = [batch_size, 28, 28, 1]
epochs = 3000
classes = 10
parallelism = 10

x_train_batch, y_train_batch = read_and_decode_recordinput(
    'train.mnist.tfrecord',
    one_hot=True,
    classes=classes,
    is_train=True,
    batch_shape=batch_shape,
    parallelism=parallelism)

x_test_batch, y_test_batch = read_and_decode_recordinput(
    'test.mnist.tfrecord',
    one_hot=True,
    classes=classes,
    is_train=True,
    batch_shape=batch_shape,
    parallelism=parallelism)


x_batch_shape = x_train_batch.get_shape().as_list()
y_batch_shape = y_train_batch.get_shape().as_list()

x_train_input = Input(tensor=x_train_batch, batch_shape=x_batch_shape)
x_train_out = cnn_layers(x_train_input)
y_train_in_out = Input(tensor=y_train_batch, batch_shape=y_batch_shape, name='y_labels')
cce = categorical_crossentropy(y_train_batch, x_train_out)
train_model = Model(inputs=[x_train_input], outputs=[x_train_out])
train_model.add_loss(cce)

train_model.compile(optimizer='rmsprop',
                    loss=None,
                    metrics=['accuracy'])
train_model.summary()

tensorboard = TensorBoard()

# tensorboard disabled due to Keras bug
train_model.fit(batch_size=batch_size,
                epochs=epochs)  # callbacks=[tensorboard])

train_model.save_weights('saved_wt.h5')

K.clear_session()

# Second Session, pure Keras
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train[..., np.newaxis]
X_test = X_test[..., np.newaxis]
x_test_inp = Input(batch_shape=(None,) + (X_test.shape[1:]))
test_out = cnn_layers(x_test_inp)
test_model = Model(inputs=x_test_inp, outputs=test_out)

test_model.load_weights('saved_wt.h5')
test_model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
test_model.summary()

loss, acc = test_model.evaluate(X_test, np_utils.to_categorical(y_test), classes)
print('\nTest accuracy: {0}'.format(acc))

J'ai également travaillé à améliorer la prise en charge de TFRecords dans le problème suivant et la demande d'extraction:

  • # 6928 Rendement Op support: Grands jeux de données haute performance via TFRecords et RecordInput
  • # 7102 Proposition de conception de l'API Keras Input Tensor

Enfin, il est possible d'utiliser tf.contrib.learn.Experiment pour former les modèles Keras à TensorFlow.

10
Andrew Hundt

Je n'utilise pas le format de jeu de données tfrecord, donc je ne discuterai pas des avantages et des inconvénients, mais je me suis intéressé à étendre Keras pour le prendre en charge.

github.com/indraforyou/keras_tfrecord est le référentiel. Expliquera brièvement les principaux changements.

Création et chargement de jeux de données

data_to_tfrecord Et read_and_decodeici s'occupe de créer le jeu de données tfrecord et de le charger. Une attention particulière doit être mise en œuvre du read_and_decode Sinon vous serez confronté à des erreurs cryptiques pendant la formation.

Initialisation et modèle Keras

Maintenant, la couche tf.train.shuffle_batch Et Keras Input renvoie le tenseur. Mais celle retournée par tf.train.shuffle_batch N'a pas de métadonnées nécessaires à Keras en interne. Il s'avère que n'importe quel tenseur peut être facilement transformé en tenseur avec des métadonnées de keras en appelant Input layer avec tensor param.

Donc, cela prend soin de l'initialisation:

x_train_, y_train_ = ktfr.read_and_decode('train.mnist.tfrecord', one_hot=True, n_class=nb_classes, is_train=True)

x_train_batch, y_train_batch = K.tf.train.shuffle_batch([x_train_, y_train_],
                                                batch_size=batch_size,
                                                capacity=2000,
                                                min_after_dequeue=1000,
                                                num_threads=32) # set the number of threads here

x_train_inp = Input(tensor=x_train_batch)

Maintenant avec x_train_inp, N'importe quel modèle de keras peut être développé.

Formation (simple)

Disons que train_out Est le tenseur de sortie de votre modèle de kéros. Vous pouvez facilement écrire une boucle de formation personnalisée sur les lignes de:

loss = tf.reduce_mean(categorical_crossentropy(y_train_batch, train_out))
train_op = tf.train.GradientDescentOptimizer(0.01).minimize(loss)


# sess.run(tf.global_variables_initializer())
sess.run(tf.initialize_all_variables())

with sess.as_default():
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    try:
      step = 0
      while not coord.should_stop():
        start_time = time.time()

        _, loss_value = sess.run([train_op, loss], feed_dict={K.learning_phase(): 0})

        duration = time.time() - start_time

        if step % 100 == 0:
          print('Step %d: loss = %.2f (%.3f sec)' % (step, loss_value,
                                                     duration))
        step += 1
    except tf.errors.OutOfRangeError:
      print('Done training for %d epochs, %d steps.' % (FLAGS.num_epochs, step))
    finally:
      coord.request_stop()

    coord.join(threads)
    sess.close()

Entraînement (style keras)

L'une des caractéristiques des keras qui le rendent si lucratif est son mécanisme de formation généralisé avec les fonctions de rappel.

Mais pour prendre en charge la formation de type tfrecords, plusieurs modifications sont nécessaires dans la fonction fit

  • exécuter les threads de file d'attente
  • aucune alimentation en données de lot via feed_dict
  • la prise en charge de la validation devient délicate car les données de validation passeront également par un autre tenseur, un modèle différent doit être créé en interne avec des couches supérieures partagées et le tenseur de validation alimenté par un autre lecteur tfrecord.

Mais tout cela peut être facilement pris en charge par un autre paramètre de drapeau. Ce qui fait gâcher les choses, ce sont les caractéristiques des keras sample_weight Et class_weight, Ils sont utilisés pour peser chaque échantillon et peser chaque classe. Pour cela, dans compile() keras crée des espaces réservés ( ici ) et des espaces réservés sont également créés implicitement pour les cibles ( ici ), ce qui n'est pas nécessaire dans notre cas, le les étiquettes sont déjà introduites par les lecteurs de tfrecord. Ces espaces réservés doivent être alimentés pendant la session, ce qui n'est pas nécessaire dans notre cae.

Donc, en tenant compte de ces changements, compile_tfrecord ( ici ) et fit_tfrecord ( ici ) sont l'extension de compile et fit et les actions indiquent 95% du code.

Ils peuvent être utilisés de la manière suivante:

import keras_tfrecord as ktfr

train_model = Model(input=x_train_inp, output=train_out)
ktfr.compile_tfrecord(train_model, optimizer='rmsprop', loss='categorical_crossentropy', out_tensor_lst=[y_train_batch], metrics=['accuracy'])

train_model.summary()

ktfr.fit_tfrecord(train_model, X_train.shape[0], batch_size, nb_Epoch=3)
train_model.save_weights('saved_wt.h5')

Vous êtes invités à améliorer le code et à tirer les demandes.

24
indraforyou