Ici dans ce code UpSampling2D
et Conv2DTranspose
semblent être utilisés de manière interchangeable. Je veux savoir pourquoi cela se produit.
# u-net model with up-convolution or up-sampling and weighted binary-crossentropy as loss func
from keras.models import Model
from keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D, concatenate, Conv2DTranspose, BatchNormalization, Dropout
from keras.optimizers import Adam
from keras.utils import plot_model
from keras import backend as K
def unet_model(n_classes=5, im_sz=160, n_channels=8, n_filters_start=32, growth_factor=2, upconv=True,
class_weights=[0.2, 0.3, 0.1, 0.1, 0.3]):
droprate=0.25
n_filters = n_filters_start
inputs = Input((im_sz, im_sz, n_channels))
#inputs = BatchNormalization()(inputs)
conv1 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(inputs)
conv1 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
#pool1 = Dropout(droprate)(pool1)
n_filters *= growth_factor
pool1 = BatchNormalization()(pool1)
conv2 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(pool1)
conv2 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
pool2 = Dropout(droprate)(pool2)
n_filters *= growth_factor
pool2 = BatchNormalization()(pool2)
conv3 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(pool2)
conv3 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
pool3 = Dropout(droprate)(pool3)
n_filters *= growth_factor
pool3 = BatchNormalization()(pool3)
conv4_0 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(pool3)
conv4_0 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(conv4_0)
pool4_1 = MaxPooling2D(pool_size=(2, 2))(conv4_0)
pool4_1 = Dropout(droprate)(pool4_1)
n_filters *= growth_factor
pool4_1 = BatchNormalization()(pool4_1)
conv4_1 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(pool4_1)
conv4_1 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(conv4_1)
pool4_2 = MaxPooling2D(pool_size=(2, 2))(conv4_1)
pool4_2 = Dropout(droprate)(pool4_2)
n_filters *= growth_factor
conv5 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(pool4_2)
conv5 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(conv5)
n_filters //= growth_factor
if upconv:
up6_1 = concatenate([Conv2DTranspose(n_filters, (2, 2), strides=(2, 2), padding='same')(conv5), conv4_1])
else:
up6_1 = concatenate([UpSampling2D(size=(2, 2))(conv5), conv4_1])
up6_1 = BatchNormalization()(up6_1)
conv6_1 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(up6_1)
conv6_1 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(conv6_1)
conv6_1 = Dropout(droprate)(conv6_1)
n_filters //= growth_factor
if upconv:
up6_2 = concatenate([Conv2DTranspose(n_filters, (2, 2), strides=(2, 2), padding='same')(conv6_1), conv4_0])
else:
up6_2 = concatenate([UpSampling2D(size=(2, 2))(conv6_1), conv4_0])
up6_2 = BatchNormalization()(up6_2)
conv6_2 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(up6_2)
conv6_2 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(conv6_2)
conv6_2 = Dropout(droprate)(conv6_2)
n_filters //= growth_factor
if upconv:
up7 = concatenate([Conv2DTranspose(n_filters, (2, 2), strides=(2, 2), padding='same')(conv6_2), conv3])
else:
up7 = concatenate([UpSampling2D(size=(2, 2))(conv6_2), conv3])
up7 = BatchNormalization()(up7)
conv7 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(up7)
conv7 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(conv7)
conv7 = Dropout(droprate)(conv7)
n_filters //= growth_factor
if upconv:
up8 = concatenate([Conv2DTranspose(n_filters, (2, 2), strides=(2, 2), padding='same')(conv7), conv2])
else:
up8 = concatenate([UpSampling2D(size=(2, 2))(conv7), conv2])
up8 = BatchNormalization()(up8)
conv8 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(up8)
conv8 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(conv8)
conv8 = Dropout(droprate)(conv8)
n_filters //= growth_factor
if upconv:
up9 = concatenate([Conv2DTranspose(n_filters, (2, 2), strides=(2, 2), padding='same')(conv8), conv1])
else:
up9 = concatenate([UpSampling2D(size=(2, 2))(conv8), conv1])
conv9 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(up9)
conv9 = Conv2D(n_filters, (3, 3), activation='relu', padding='same')(conv9)
conv10 = Conv2D(n_classes, (1, 1), activation='sigmoid')(conv9)
model = Model(inputs=inputs, outputs=conv10)
def weighted_binary_crossentropy(y_true, y_pred):
class_loglosses = K.mean(K.binary_crossentropy(y_true, y_pred), axis=[0, 1, 2])
return K.sum(class_loglosses * K.constant(class_weights))
model.compile(optimizer=Adam(), loss=weighted_binary_crossentropy)
return model
UpSampling2D n’est qu’une simple mise à l’échelle de l’image en la redimensionnant, donc rien d’intelligent. L'avantage est son pas cher.
Conv2DTranspose est une opération de convolution dont le noyau est appris (comme pour une opération conv2d normale) lors de la formation de votre modèle. L'utilisation de Conv2DTranspose permet également de suréchantillonner ses entrées, mais la principale différence est que le modèle doit apprendre quel est le meilleur suréchantillonnage pour le travail.
EDIT: Lien vers la visualisation de Nice de la convolution transposée: https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d