web-dev-qa-db-fra.com

Comment normaliser/dénormaliser un vecteur à une plage [-1; 1]

Comment puis-je normaliser un vecteur à la plage [-1;1]

J'aimerais utiliser la fonction norm, car ce sera plus rapide.

Dites-moi aussi comment je peux dénormaliser ce vecteur après la normalisation ?

16
neverMind

norm normalise un vecteur de sorte que sa somme de carrés soit égale à 1. 

Si vous souhaitez normaliser le vecteur afin que tous ses éléments soient compris entre 0 et 1, vous devez utiliser les valeurs minimale et maximale, que vous pouvez ensuite utiliser pour dénormaliser à nouveau.

%# generate some vector
vec = randn(10,1);

%# get max and min
maxVec = max(vec);
minVec = min(vec);

%# normalize to -1...1
vecN = ((vec-minVec)./(maxVec-minVec) - 0.5 ) *2;

%# to "de-normalize", apply the calculations in reverse
vecD = (vecN./2+0.5) * (maxVec-minVec) + minVec
26
Jonas

Une réponse actualisée consisterait à utiliser la fonction rescale introduite dans Matlab R2017b. Pour normaliser le vecteur A à la plage -1:1, vous devez exécuter:

A = rescale(A, -1, 1);

Vous pouvez annuler cela en sauvegardant le minimum et le maximum au préalable, puis en réexécutant l'échelle:

maxA = max(A(:));
minA = min(A(:));
A = rescale(A, -1, 1);
% use the normalised A
A = rescale(A, minA, maxA);
0
benplumley

Une réponse étendue qui a été construite sur la réponse de Jonas est ci-dessous. Il permet une normalisation automatisée en fonction de la présence de nombres négatifs et positifs dans le vecteur ou une sélection manuelle du type de normalisation souhaité. Sous la fonction se trouve un script de test. 

Fonction de normalisation

function [vecN, vecD] = normVec(vec,varargin)
% Returns a normalize vector (vecN) and "de-nomralized" vector (vecD). The
% function detects if both positive and negative values are present or not
% and automatically normalizes between the appropriate range (i.e., [0,1],
% [-1,0], or [-1,-1].
% Optional argument allows control of normalization range:
% normVec(vec,0) => sets range based on positive/negative value detection
% normVec(vec,1) => sets range to [0,1]
% normVec(vec,2) => sets range to [-1,0]
% normVec(vec,3) => sets range to [-1,1]

%% Default Input Values
% Check for proper length of input arguments
numvarargs = length(varargin);
if numvarargs > 1
    error('Requires at most 1 optional input');
end

% Set defaults for optional inputs
optargs = {0};

% Overwrite default values if new values provided
optargs(1:numvarargs) = varargin;

% Set input to variable names
[setNorm] = optargs{:};

%% Normalize input vector
% get max and min
maxVec = max(vec);
minVec = min(vec);

if setNorm == 0
    % Automated normalization
    if minVec >= 0
        % Normalize between 0 and 1
        vecN = (vec - minVec)./( maxVec - minVec );
        vecD = minVec + vecN.*(maxVec - minVec);
    elseif maxVec <= 0
        % Normalize between -1 and 0
        vecN = (vec - maxVec)./( maxVec - minVec );
        vecD = maxVec + vecN.*(maxVec - minVec);
    else
        % Normalize between -1 and 1
        vecN = ((vec-minVec)./(maxVec-minVec) - 0.5 ) *2;
        vecD = (vecN./2+0.5) * (maxVec-minVec) + minVec;
    end
elseif setNorm == 1
    % Normalize between 0 and 1
    vecN = (vec - minVec)./( maxVec - minVec );
    vecD = minVec + vecN.*(maxVec - minVec);
elseif setNorm == 2
    % Normalize between -1 and 0
    vecN = (vec - maxVec)./( maxVec - minVec );
    vecD = maxVec + vecN.*(maxVec - minVec);
elseif setNorm == 3
    % Normalize between -1 and 1
    vecN = ((vec-minVec)./(maxVec-minVec) - 0.5 ) *2;
    vecD = (vecN./2+0.5) * (maxVec-minVec) + minVec;
else
    error('Unrecognized input argument varargin. Options are {0,1,2,3}');
end

Script pour tester la fonction

% Define vector
x=linspace(0,4*pi,25);
y = sin(x);
ya=sin(x); yb=y+10; yc=y-10;

% Normalize vector
ya0=normVec(ya); yb0=normVec(yb); yc0=normVec(yc);
ya1=normVec(ya,1); yb1=normVec(yb,1); yc1=normVec(yc,1);
ya2=normVec(ya,2); yb2=normVec(yb,2); yc2=normVec(yc,2);
ya3=normVec(ya,3); yb3=normVec(yb,3); yc3=normVec(yc,3);

% Plot results
figure(1)
subplot(2,2,1)
plot(x,ya0,'k',x,yb0,'ro',x,yc0,'b^')
title('Auto Norm-Range')
subplot(2,2,2)
plot(x,ya1,'k',x,yb1,'ro',x,yc1,'b^')
title('Manual Norm-Range: [0,1]')
subplot(2,2,3)
plot(x,ya2,'k',x,yb2,'ro',x,yc2,'b^')
title('Manual Norm-Range: [-1,0]')
subplot(2,2,4)
plot(x,ya3,'k',x,yb3,'ro',x,yc3,'b^')
title('Manual Norm-Range: [-1,1]')
0
Scott G

Une solution simple consiste à utiliser la fonction ready MATLAB:

mapminmax

Traiter les matrices en mappant les valeurs minimales et maximales des lignes sur [-1 1]

Exemple :

x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0]
[y1,PS] = mapminmax(x1)

Dénormaliser ce vecteur après normalisation

x1_again = mapminmax('reverse',y1,PS)
0
PyMatFlow