Je veux créer un générateur de bruit 3D de type terrain et après avoir fait quelques recherches, je suis arrivé à la conclusion que le bruit simplex est de loin le meilleur type de bruit pour ce faire.
Je trouve le nom assez trompeur car j'ai beaucoup de mal à trouver des ressources sur le sujet et les ressources que je trouve sont souvent mal écrites.
Ce que je recherche fondamentalement est une bonne ressource/tutoriel expliquant étape par étape comment fonctionne le bruit simplex et explique comment implémenter cela dans un programme.
Je ne cherche pas de ressources expliquant comment utiliser une bibliothèque ou quelque chose.
À la suite d'une recommandation de tutoriel, j'essaierai d'expliquer comment utiliser une source Java existante qui crée une seule octave de bruit simplex).
Cette partie du code a été créée par Stefan Gustavson et a été placée dans le domaine public. Il peut être trouvé ici . Il est cité ici pour plus de commodité
import Java.awt.Color;
import Java.awt.image.BufferedImage;
import Java.io.File;
import Java.io.IOException;
import Java.util.Random;
import javax.imageio.ImageIO;
/*
* A speed-improved simplex noise algorithm for 2D, 3D and 4D in Java.
*
* Based on example code by Stefan Gustavson ([email protected]).
* Optimisations by Peter Eastman ([email protected]).
* Better rank ordering method by Stefan Gustavson in 2012.
*
* This could be speeded up even further, but it's useful as it is.
*
* Version 2012-03-09
*
* This code was placed in the public domain by its original author,
* Stefan Gustavson. You may use it as you see fit, but
* attribution is appreciated.
*
*/
public class SimplexNoise_octave { // Simplex noise in 2D, 3D and 4D
public static int RANDOMSEED=0;
private static int NUMBEROFSWAPS=400;
private static Grad grad3[] = {new Grad(1,1,0),new Grad(-1,1,0),new Grad(1,-1,0),new Grad(-1,-1,0),
new Grad(1,0,1),new Grad(-1,0,1),new Grad(1,0,-1),new Grad(-1,0,-1),
new Grad(0,1,1),new Grad(0,-1,1),new Grad(0,1,-1),new Grad(0,-1,-1)};
private static Grad grad4[]= {new Grad(0,1,1,1),new Grad(0,1,1,-1),new Grad(0,1,-1,1),new Grad(0,1,-1,-1),
new Grad(0,-1,1,1),new Grad(0,-1,1,-1),new Grad(0,-1,-1,1),new Grad(0,-1,-1,-1),
new Grad(1,0,1,1),new Grad(1,0,1,-1),new Grad(1,0,-1,1),new Grad(1,0,-1,-1),
new Grad(-1,0,1,1),new Grad(-1,0,1,-1),new Grad(-1,0,-1,1),new Grad(-1,0,-1,-1),
new Grad(1,1,0,1),new Grad(1,1,0,-1),new Grad(1,-1,0,1),new Grad(1,-1,0,-1),
new Grad(-1,1,0,1),new Grad(-1,1,0,-1),new Grad(-1,-1,0,1),new Grad(-1,-1,0,-1),
new Grad(1,1,1,0),new Grad(1,1,-1,0),new Grad(1,-1,1,0),new Grad(1,-1,-1,0),
new Grad(-1,1,1,0),new Grad(-1,1,-1,0),new Grad(-1,-1,1,0),new Grad(-1,-1,-1,0)};
private static short p_supply[] = {151,160,137,91,90,15, //this contains all the numbers between 0 and 255, these are put in a random order depending upon the seed
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180};
private short p[]=new short[p_supply.length];
// To remove the need for index wrapping, double the permutation table length
private short perm[] = new short[512];
private short permMod12[] = new short[512];
public SimplexNoise_octave(int seed) {
p=p_supply.clone();
if (seed==RANDOMSEED){
Random Rand=new Random();
seed=Rand.nextInt();
}
//the random for the swaps
Random Rand=new Random(seed);
//the seed determines the swaps that occur between the default order and the order we're actually going to use
for(int i=0;i<NUMBEROFSWAPS;i++){
int swapFrom=Rand.nextInt(p.length);
int swapTo=Rand.nextInt(p.length);
short temp=p[swapFrom];
p[swapFrom]=p[swapTo];
p[swapTo]=temp;
}
for(int i=0; i<512; i++)
{
perm[i]=p[i & 255];
permMod12[i] = (short)(perm[i] % 12);
}
}
// Skewing and unskewing factors for 2, 3, and 4 dimensions
private static final double F2 = 0.5*(Math.sqrt(3.0)-1.0);
private static final double G2 = (3.0-Math.sqrt(3.0))/6.0;
private static final double F3 = 1.0/3.0;
private static final double G3 = 1.0/6.0;
private static final double F4 = (Math.sqrt(5.0)-1.0)/4.0;
private static final double G4 = (5.0-Math.sqrt(5.0))/20.0;
// This method is a *lot* faster than using (int)Math.floor(x)
private static int fastfloor(double x) {
int xi = (int)x;
return x<xi ? xi-1 : xi;
}
private static double dot(Grad g, double x, double y) {
return g.x*x + g.y*y; }
private static double dot(Grad g, double x, double y, double z) {
return g.x*x + g.y*y + g.z*z; }
private static double dot(Grad g, double x, double y, double z, double w) {
return g.x*x + g.y*y + g.z*z + g.w*w; }
// 2D simplex noise
public double noise(double xin, double yin) {
double n0, n1, n2; // Noise contributions from the three corners
// Skew the input space to determine which simplex cell we're in
double s = (xin+yin)*F2; // Hairy factor for 2D
int i = fastfloor(xin+s);
int j = fastfloor(yin+s);
double t = (i+j)*G2;
double X0 = i-t; // Unskew the cell Origin back to (x,y) space
double Y0 = j-t;
double x0 = xin-X0; // The x,y distances from the cell Origin
double y0 = yin-Y0;
// For the 2D case, the simplex shape is an equilateral triangle.
// Determine which simplex we are in.
int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
if(x0>y0) {i1=1; j1=0;} // lower triangle, XY order: (0,0)->(1,0)->(1,1)
else {i1=0; j1=1;} // upper triangle, YX order: (0,0)->(0,1)->(1,1)
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
// c = (3-sqrt(3))/6
double x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
double y1 = y0 - j1 + G2;
double x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
double y2 = y0 - 1.0 + 2.0 * G2;
// Work out the hashed gradient indices of the three simplex corners
int ii = i & 255;
int jj = j & 255;
int gi0 = permMod12[ii+perm[jj]];
int gi1 = permMod12[ii+i1+perm[jj+j1]];
int gi2 = permMod12[ii+1+perm[jj+1]];
// Calculate the contribution from the three corners
double t0 = 0.5 - x0*x0-y0*y0;
if(t0<0) n0 = 0.0;
else {
t0 *= t0;
n0 = t0 * t0 * dot(grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient
}
double t1 = 0.5 - x1*x1-y1*y1;
if(t1<0) n1 = 0.0;
else {
t1 *= t1;
n1 = t1 * t1 * dot(grad3[gi1], x1, y1);
}
double t2 = 0.5 - x2*x2-y2*y2;
if(t2<0) n2 = 0.0;
else {
t2 *= t2;
n2 = t2 * t2 * dot(grad3[gi2], x2, y2);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to return values in the interval [-1,1].
return 70.0 * (n0 + n1 + n2);
}
// 3D simplex noise
public double noise(double xin, double yin, double zin) {
double n0, n1, n2, n3; // Noise contributions from the four corners
// Skew the input space to determine which simplex cell we're in
double s = (xin+yin+zin)*F3; // Very Nice and simple skew factor for 3D
int i = fastfloor(xin+s);
int j = fastfloor(yin+s);
int k = fastfloor(zin+s);
double t = (i+j+k)*G3;
double X0 = i-t; // Unskew the cell Origin back to (x,y,z) space
double Y0 = j-t;
double Z0 = k-t;
double x0 = xin-X0; // The x,y,z distances from the cell Origin
double y0 = yin-Y0;
double z0 = zin-Z0;
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
// Determine which simplex we are in.
int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
if(x0>=y0) {
if(y0>=z0)
{ i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } // X Y Z order
else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } // X Z Y order
else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } // Z X Y order
}
else { // x0<y0
if(y0<z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; } // Z Y X order
else if(x0<z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; } // Y Z X order
else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; } // Y X Z order
}
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
// c = 1/6.
double x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
double y1 = y0 - j1 + G3;
double z1 = z0 - k1 + G3;
double x2 = x0 - i2 + 2.0*G3; // Offsets for third corner in (x,y,z) coords
double y2 = y0 - j2 + 2.0*G3;
double z2 = z0 - k2 + 2.0*G3;
double x3 = x0 - 1.0 + 3.0*G3; // Offsets for last corner in (x,y,z) coords
double y3 = y0 - 1.0 + 3.0*G3;
double z3 = z0 - 1.0 + 3.0*G3;
// Work out the hashed gradient indices of the four simplex corners
int ii = i & 255;
int jj = j & 255;
int kk = k & 255;
int gi0 = permMod12[ii+perm[jj+perm[kk]]];
int gi1 = permMod12[ii+i1+perm[jj+j1+perm[kk+k1]]];
int gi2 = permMod12[ii+i2+perm[jj+j2+perm[kk+k2]]];
int gi3 = permMod12[ii+1+perm[jj+1+perm[kk+1]]];
// Calculate the contribution from the four corners
double t0 = 0.6 - x0*x0 - y0*y0 - z0*z0;
if(t0<0) n0 = 0.0;
else {
t0 *= t0;
n0 = t0 * t0 * dot(grad3[gi0], x0, y0, z0);
}
double t1 = 0.6 - x1*x1 - y1*y1 - z1*z1;
if(t1<0) n1 = 0.0;
else {
t1 *= t1;
n1 = t1 * t1 * dot(grad3[gi1], x1, y1, z1);
}
double t2 = 0.6 - x2*x2 - y2*y2 - z2*z2;
if(t2<0) n2 = 0.0;
else {
t2 *= t2;
n2 = t2 * t2 * dot(grad3[gi2], x2, y2, z2);
}
double t3 = 0.6 - x3*x3 - y3*y3 - z3*z3;
if(t3<0) n3 = 0.0;
else {
t3 *= t3;
n3 = t3 * t3 * dot(grad3[gi3], x3, y3, z3);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to stay just inside [-1,1]
return 32.0*(n0 + n1 + n2 + n3);
}
// 4D simplex noise, better simplex rank ordering method 2012-03-09
public double noise(double x, double y, double z, double w) {
double n0, n1, n2, n3, n4; // Noise contributions from the five corners
// Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
double s = (x + y + z + w) * F4; // Factor for 4D skewing
int i = fastfloor(x + s);
int j = fastfloor(y + s);
int k = fastfloor(z + s);
int l = fastfloor(w + s);
double t = (i + j + k + l) * G4; // Factor for 4D unskewing
double X0 = i - t; // Unskew the cell Origin back to (x,y,z,w) space
double Y0 = j - t;
double Z0 = k - t;
double W0 = l - t;
double x0 = x - X0; // The x,y,z,w distances from the cell Origin
double y0 = y - Y0;
double z0 = z - Z0;
double w0 = w - W0;
// For the 4D case, the simplex is a 4D shape I won't even try to describe.
// To find out which of the 24 possible simplices we're in, we need to
// determine the magnitude ordering of x0, y0, z0 and w0.
// Six pair-wise comparisons are performed between each possible pair
// of the four coordinates, and the results are used to rank the numbers.
int rankx = 0;
int ranky = 0;
int rankz = 0;
int rankw = 0;
if(x0 > y0) rankx++; else ranky++;
if(x0 > z0) rankx++; else rankz++;
if(x0 > w0) rankx++; else rankw++;
if(y0 > z0) ranky++; else rankz++;
if(y0 > w0) ranky++; else rankw++;
if(z0 > w0) rankz++; else rankw++;
int i1, j1, k1, l1; // The integer offsets for the second simplex corner
int i2, j2, k2, l2; // The integer offsets for the third simplex corner
int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner
// simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
// Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
// impossible. Only the 24 indices which have non-zero entries make any sense.
// We use a thresholding to set the coordinates in turn from the largest magnitude.
// Rank 3 denotes the largest coordinate.
i1 = rankx >= 3 ? 1 : 0;
j1 = ranky >= 3 ? 1 : 0;
k1 = rankz >= 3 ? 1 : 0;
l1 = rankw >= 3 ? 1 : 0;
// Rank 2 denotes the second largest coordinate.
i2 = rankx >= 2 ? 1 : 0;
j2 = ranky >= 2 ? 1 : 0;
k2 = rankz >= 2 ? 1 : 0;
l2 = rankw >= 2 ? 1 : 0;
// Rank 1 denotes the second smallest coordinate.
i3 = rankx >= 1 ? 1 : 0;
j3 = ranky >= 1 ? 1 : 0;
k3 = rankz >= 1 ? 1 : 0;
l3 = rankw >= 1 ? 1 : 0;
// The fifth corner has all coordinate offsets = 1, so no need to compute that.
double x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
double y1 = y0 - j1 + G4;
double z1 = z0 - k1 + G4;
double w1 = w0 - l1 + G4;
double x2 = x0 - i2 + 2.0*G4; // Offsets for third corner in (x,y,z,w) coords
double y2 = y0 - j2 + 2.0*G4;
double z2 = z0 - k2 + 2.0*G4;
double w2 = w0 - l2 + 2.0*G4;
double x3 = x0 - i3 + 3.0*G4; // Offsets for fourth corner in (x,y,z,w) coords
double y3 = y0 - j3 + 3.0*G4;
double z3 = z0 - k3 + 3.0*G4;
double w3 = w0 - l3 + 3.0*G4;
double x4 = x0 - 1.0 + 4.0*G4; // Offsets for last corner in (x,y,z,w) coords
double y4 = y0 - 1.0 + 4.0*G4;
double z4 = z0 - 1.0 + 4.0*G4;
double w4 = w0 - 1.0 + 4.0*G4;
// Work out the hashed gradient indices of the five simplex corners
int ii = i & 255;
int jj = j & 255;
int kk = k & 255;
int ll = l & 255;
int gi0 = perm[ii+perm[jj+perm[kk+perm[ll]]]] % 32;
int gi1 = perm[ii+i1+perm[jj+j1+perm[kk+k1+perm[ll+l1]]]] % 32;
int gi2 = perm[ii+i2+perm[jj+j2+perm[kk+k2+perm[ll+l2]]]] % 32;
int gi3 = perm[ii+i3+perm[jj+j3+perm[kk+k3+perm[ll+l3]]]] % 32;
int gi4 = perm[ii+1+perm[jj+1+perm[kk+1+perm[ll+1]]]] % 32;
// Calculate the contribution from the five corners
double t0 = 0.6 - x0*x0 - y0*y0 - z0*z0 - w0*w0;
if(t0<0) n0 = 0.0;
else {
t0 *= t0;
n0 = t0 * t0 * dot(grad4[gi0], x0, y0, z0, w0);
}
double t1 = 0.6 - x1*x1 - y1*y1 - z1*z1 - w1*w1;
if(t1<0) n1 = 0.0;
else {
t1 *= t1;
n1 = t1 * t1 * dot(grad4[gi1], x1, y1, z1, w1);
}
double t2 = 0.6 - x2*x2 - y2*y2 - z2*z2 - w2*w2;
if(t2<0) n2 = 0.0;
else {
t2 *= t2;
n2 = t2 * t2 * dot(grad4[gi2], x2, y2, z2, w2);
}
double t3 = 0.6 - x3*x3 - y3*y3 - z3*z3 - w3*w3;
if(t3<0) n3 = 0.0;
else {
t3 *= t3;
n3 = t3 * t3 * dot(grad4[gi3], x3, y3, z3, w3);
}
double t4 = 0.6 - x4*x4 - y4*y4 - z4*z4 - w4*w4;
if(t4<0) n4 = 0.0;
else {
t4 *= t4;
n4 = t4 * t4 * dot(grad4[gi4], x4, y4, z4, w4);
}
// Sum up and scale the result to cover the range [-1,1]
return 27.0 * (n0 + n1 + n2 + n3 + n4);
}
// Inner class to speed upp gradient computations
// (array access is a lot slower than member access)
private static class Grad
{
double x, y, z, w;
Grad(double x, double y, double z)
{
this.x = x;
this.y = y;
this.z = z;
}
Grad(double x, double y, double z, double w)
{
this.x = x;
this.y = y;
this.z = z;
this.w = w;
}
}
}
Franchement, je considère cette classe entière comme une boîte noire avec un constructeur public public SimplexNoise_octave(int seed)
, et 3 méthodes publiques public double noise(double xin, double yin)
, public double noise(double xin, double yin, double zin)
et public double noise(double x, double y, double z, double w)
.
Vous pouvez utiliser ces méthodes exactement comme vous le feriez pour les équivalents de bruit perlin.
SimplexNoise_octave(int seed)
Créez 1 SimplexNoise_octave pour chaque octave que vous voulez, chacun devrait avoir sa propre graine
public double noise(double xin, double yin)
Appelez pour obtenir la valeur de bruit particulière pour cette octave à ces coordonnées. Remarque; les coordonnées doivent être pré-échelonnées (plus tard). Les autres fonctions noise
sont les mêmes mais pour des dimensions plus élevées.
Tout comme dans le bruit perlin, vous combinerez généralement plusieurs octaves de bruit pour créer un bruit fractal (ce qui vous donne des caractéristiques de terrain). Notez que les hauteurs de terrain 3D sont créées par du bruit 2D.
Plusieurs octaves sont combinées en utilisant les ratios suivants
frequency = 2^i
amplitude = persistence^i
Pour chaque octave (i) vous divisez les coordonnées d'entrée par fréquence et multipliez le résultat par amplitude; cela donne un aspect de terrain. La persistance est utilisée pour affecter l'apparence du terrain, une forte persistance (vers 1) donne un terrain montagneux rocheux. une faible persistance (vers 0) donne un terrain plat variant lentement. Voir page de balises pour plus de détails.
Un exemple de la façon dont cela pourrait être utilisé est illustré ci-dessous:
import Java.util.Random;
public class SimplexNoise {
SimplexNoise_octave[] octaves;
double[] frequencys;
double[] amplitudes;
int largestFeature;
double persistence;
int seed;
public SimplexNoise(int largestFeature,double persistence, int seed){
this.largestFeature=largestFeature;
this.persistence=persistence;
this.seed=seed;
//recieves a number (eg 128) and calculates what power of 2 it is (eg 2^7)
int numberOfOctaves=(int)Math.ceil(Math.log10(largestFeature)/Math.log10(2));
octaves=new SimplexNoise_octave[numberOfOctaves];
frequencys=new double[numberOfOctaves];
amplitudes=new double[numberOfOctaves];
Random rnd=new Random(seed);
for(int i=0;i<numberOfOctaves;i++){
octaves[i]=new SimplexNoise_octave(rnd.nextInt());
frequencys[i] = Math.pow(2,i);
amplitudes[i] = Math.pow(persistence,octaves.length-i);
}
}
public double getNoise(int x, int y){
double result=0;
for(int i=0;i<octaves.length;i++){
//double frequency = Math.pow(2,i);
//double amplitude = Math.pow(persistence,octaves.length-i);
result=result+octaves[i].noise(x/frequencys[i], y/frequencys[i])* amplitudes[i];
}
return result;
}
public double getNoise(int x,int y, int z){
double result=0;
for(int i=0;i<octaves.length;i++){
double frequency = Math.pow(2,i);
double amplitude = Math.pow(persistence,octaves.length-i);
result=result+octaves[i].noise(x/frequency, y/frequency,z/frequency)* amplitude;
}
return result;
}
}
Cela crée des octaves qui donnent des caractéristiques de taille entre 1 et largestFeature
, j'ai trouvé cela utile mais il n'y a rien de spécial à propos de 1 étant la plus petite taille et vous pouvez modifier cela. Il produit entre -1 et 1, échelle selon les besoins.
Un exemple de méthode principale qui utiliserait cette classe est le suivant
public static void main(String args[]){
SimplexNoise simplexNoise=new SimplexNoise(100,0.1,5000);
double xStart=0;
double XEnd=500;
double yStart=0;
double yEnd=500;
int xResolution=200;
int yResolution=200;
double[][] result=new double[xResolution][yResolution];
for(int i=0;i<xResolution;i++){
for(int j=0;j<yResolution;j++){
int x=(int)(xStart+i*((XEnd-xStart)/xResolution));
int y=(int)(yStart+j*((yEnd-yStart)/yResolution));
result[i][j]=0.5*(1+simplexNoise.getNoise(x,y));
}
}
ImageWriter.greyWriteImage(result);
}
Cette méthode utilise ma propre classe ImageWriter juste pour rendre la sortie dans un fichier
import Java.awt.Color;
import Java.awt.image.BufferedImage;
import Java.io.File;
import Java.io.IOException;
import javax.imageio.ImageIO;
public class ImageWriter {
//just convinence methods for debug
public static void greyWriteImage(double[][] data){
//this takes and array of doubles between 0 and 1 and generates a grey scale image from them
BufferedImage image = new BufferedImage(data.length,data[0].length, BufferedImage.TYPE_INT_RGB);
for (int y = 0; y < data[0].length; y++)
{
for (int x = 0; x < data.length; x++)
{
if (data[x][y]>1){
data[x][y]=1;
}
if (data[x][y]<0){
data[x][y]=0;
}
Color col=new Color((float)data[x][y],(float)data[x][y],(float)data[x][y]);
image.setRGB(x, y, col.getRGB());
}
}
try {
// retrieve image
File outputfile = new File("saved.png");
outputfile.createNewFile();
ImageIO.write(image, "png", outputfile);
} catch (IOException e) {
//o no! Blank catches are bad
throw new RuntimeException("I didn't handle this very well");
}
}
}