Mes ensembles de données ressemblent à:
Date Value
1/1/1988 0.62
1/2/1988 0.64
1/3/1988 0.65
1/4/1988 0.66
1/5/1988 0.67
1/6/1988 0.66
1/7/1988 0.64
1/8/1988 0.66
1/9/1988 0.65
1/10/1988 0.65
1/11/1988 0.64
1/12/1988 0.66
1/13/1988 0.67
1/14/1988 0.66
1/15/1988 0.65
1/16/1988 0.64
1/17/1988 0.62
1/18/1988 0.64
1/19/1988 0.62
1/20/1988 0.62
1/21/1988 0.64
1/22/1988 0.62
1/23/1988 0.60
J'ai utilisé ce code pour lire ces données
df.set_index(df['Date'], drop=False, append=False, inplace=False, verify_integrity=False).drop('Date', 1)
mais le problème est que l'index n'est pas au format de date. La question est donc de savoir comment définir cette colonne comme index de date?
Votre question manquait d'une explication appropriée, mais vous pouvez procéder comme suit:
In [75]:
# convert to datetime
df['Date'] = pd.to_datetime(df['Date'])
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 23 entries, 0 to 22
Data columns (total 2 columns):
Date 23 non-null datetime64[ns]
Value 23 non-null float64
dtypes: datetime64[ns](1), float64(1)
memory usage: 448.0 bytes
In [76]:
# set the index
df.set_index('Date', inplace=True)
df.info()
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 23 entries, 1988-01-01 to 1988-01-23
Data columns (total 1 columns):
Value 23 non-null float64
dtypes: float64(1)
memory usage: 368.0 bytes
Alors ici to_datetime
convertira les chaînes de date en datetime
dtype, set_index
avec param inplace=True
est tout ce dont vous avez besoin,