Je ne pouvais pas trouver de code de fusion Python 3.3 fonctionnel, alors j'en ai créé un moi-même. Y a-t-il un moyen d'accélérer les choses? Il trie 20000 numéros en environ 0.3-0.5 secondes
def msort(x):
result = []
if len(x) < 2:
return x
mid = int(len(x)/2)
y = msort(x[:mid])
z = msort(x[mid:])
while (len(y) > 0) or (len(z) > 0):
if len(y) > 0 and len(z) > 0:
if y[0] > z[0]:
result.append(z[0])
z.pop(0)
else:
result.append(y[0])
y.pop(0)
Elif len(z) > 0:
for i in z:
result.append(i)
z.pop(0)
else:
for i in y:
result.append(i)
y.pop(0)
return result
Vous pouvez initialiser la liste complète des résultats dans l’appel de niveau supérieur de mergesort:
result = [0]*len(x) # replace 0 with a suitable default element if necessary.
# or just copy x (result = x[:])
Ensuite, pour les appels récursifs, vous pouvez utiliser une fonction d'assistance à laquelle vous passez non pas des sous-listes, mais des index dans x
. Et les appels de niveau inférieur lisent leurs valeurs à partir de x
et écrivent directement dans result
.
De cette façon, vous éviterez tout cela pop
ing et append
ing qui devrait améliorer les performances.
La première amélioration consisterait à simplifier les trois cas de la boucle principale: Plutôt que d’itérer alors que certaines séquences contiennent des éléments, itérer tant que les deux ont des éléments. En sortant de la boucle, l'un d'eux sera vide, on ne sait pas lequel, mais on s'en fiche: on les ajoute à la fin du résultat.
def msort2(x):
if len(x) < 2:
return x
result = [] # moved!
mid = int(len(x) / 2)
y = msort2(x[:mid])
z = msort2(x[mid:])
while (len(y) > 0) and (len(z) > 0):
if y[0] > z[0]:
result.append(z[0])
z.pop(0)
else:
result.append(y[0])
y.pop(0)
result += y
result += z
return result
La deuxième optimisation consiste à éviter pop
ping les éléments. Plutôt, avoir deux indices:
def msort3(x):
if len(x) < 2:
return x
result = []
mid = int(len(x) / 2)
y = msort3(x[:mid])
z = msort3(x[mid:])
i = 0
j = 0
while i < len(y) and j < len(z):
if y[i] > z[j]:
result.append(z[j])
j += 1
else:
result.append(y[i])
i += 1
result += y[i:]
result += z[j:]
return result
Une dernière amélioration consiste à utiliser un algorithme non récursif pour trier les séquences courtes. Dans ce cas, j'utilise la fonction sorted
intégrée et je l'utilise lorsque la taille de l'entrée est inférieure à 20:
def msort4(x):
if len(x) < 20:
return sorted(x)
result = []
mid = int(len(x) / 2)
y = msort4(x[:mid])
z = msort4(x[mid:])
i = 0
j = 0
while i < len(y) and j < len(z):
if y[i] > z[j]:
result.append(z[j])
j += 1
else:
result.append(y[i])
i += 1
result += y[i:]
result += z[j:]
return result
Mes mesures pour trier une liste aléatoire de 100 000 entiers sont de 2,46 secondes pour la version d'origine, 2,33 pour msort2, 0,60 pour msort3 et 0,40 pour msort4. Pour référence, le tri de la liste avec sorted
prend 0,03 seconde.
Code du cours MIT. (avec coopérateur générique)
import operator
def merge(left, right, compare):
result = []
i, j = 0, 0
while i < len(left) and j < len(right):
if compare(left[i], right[j]):
result.append(left[i])
i += 1
else:
result.append(right[j])
j += 1
while i < len(left):
result.append(left[i])
i += 1
while j < len(right):
result.append(right[j])
j += 1
return result
def mergeSort(L, compare=operator.lt):
if len(L) < 2:
return L[:]
else:
middle = int(len(L) / 2)
left = mergeSort(L[:middle], compare)
right = mergeSort(L[middle:], compare)
return merge(left, right, compare)
def merge_sort(x):
if len(x) < 2:return x
result,mid = [],int(len(x)/2)
y = merge_sort(x[:mid])
z = merge_sort(x[mid:])
while (len(y) > 0) and (len(z) > 0):
if y[0] > z[0]:result.append(z.pop(0))
else:result.append(y.pop(0))
result.extend(y+z)
return result
Prends ma mise en œuvre
def merge_sort(sequence):
"""
Sequence of numbers is taken as input, and is split into two halves, following which they are recursively sorted.
"""
if len(sequence) < 2:
return sequence
mid = len(sequence) // 2 # note: 7//2 = 3, whereas 7/2 = 3.5
left_sequence = merge_sort(sequence[:mid])
right_sequence = merge_sort(sequence[mid:])
return merge(left_sequence, right_sequence)
def merge(left, right):
"""
Traverse both sorted sub-arrays (left and right), and populate the result array
"""
result = []
i = j = 0
while i < len(left) and j < len(right):
if left[i] < right[j]:
result.append(left[i])
i += 1
else:
result.append(right[j])
j += 1
result += left[i:]
result += right[j:]
return result
print merge_sort([5, 2, 6, 8, 5, 8, 1])
Comme déjà dit, l.pop(0)
est une opération O(len(l)) et doit être évité, la fonction msort ci-dessus est O (n ** 2). Si l’efficacité importe, l’indexation est préférable, mais elle a aussi un coût. Le for x in l
est plus rapide mais difficile à implémenter pour mergesort: iter
peut être utilisé ici. Enfin, la vérification de i < len(l)
est effectuée deux fois car testée de nouveau lors de l'accès à l'élément: le mécanisme d'exception (try except) est meilleur et donne une dernière amélioration de 30%.
def msort(l):
if len(l)>1:
t=len(l)//2
it1=iter(msort(l[:t]));x1=next(it1)
it2=iter(msort(l[t:]));x2=next(it2)
l=[]
try:
while True:
if x1<=x2: l.append(x1);x1=next(it1)
else : l.append(x2);x2=next(it2)
except:
if x1<=x2: l.append(x2);l.extend(it2)
else: l.append(x1);l.extend(it1)
return l
Des boucles comme celle-ci peuvent probablement être accélérées:
for i in z:
result.append(i)
z.pop(0)
Au lieu de cela, faites simplement ceci:
result.extend(z)
Notez qu'il n'est pas nécessaire de nettoyer le contenu de z
car vous ne l'utiliserez pas de toute façon.
Une version plus longue qui compte les inversions et adhère à l’interface sorted
. Il est trivial de modifier cela pour en faire une méthode d'objet qui trie sur place.
import operator
class MergeSorted:
def __init__(self):
self.inversions = 0
def __call__(self, l, key=None, reverse=False):
self.inversions = 0
if key is None:
self.key = lambda x: x
else:
self.key = key
if reverse:
self.compare = operator.gt
else:
self.compare = operator.lt
dest = list(l)
working = [0] * len(l)
self.inversions = self._merge_sort(dest, working, 0, len(dest))
return dest
def _merge_sort(self, dest, working, low, high):
if low < high - 1:
mid = (low + high) // 2
x = self._merge_sort(dest, working, low, mid)
y = self._merge_sort(dest, working, mid, high)
z = self._merge(dest, working, low, mid, high)
return (x + y + z)
else:
return 0
def _merge(self, dest, working, low, mid, high):
i = 0
j = 0
inversions = 0
while (low + i < mid) and (mid + j < high):
if self.compare(self.key(dest[low + i]), self.key(dest[mid + j])):
working[low + i + j] = dest[low + i]
i += 1
else:
working[low + i + j] = dest[mid + j]
inversions += (mid - (low + i))
j += 1
while low + i < mid:
working[low + i + j] = dest[low + i]
i += 1
while mid + j < high:
working[low + i + j] = dest[mid + j]
j += 1
for k in range(low, high):
dest[k] = working[k]
return inversions
msorted = MergeSorted()
Les usages
>>> l = [5, 2, 3, 1, 4]
>>> s = msorted(l)
>>> s
[1, 2, 3, 4, 5]
>>> msorted.inversions
6
>>> l = ['e', 'b', 'c', 'a', 'd']
>>> d = {'a': 10,
... 'b': 4,
... 'c': 2,
... 'd': 5,
... 'e': 9}
>>> key = lambda x: d[x]
>>> s = msorted(l, key=key)
>>> s
['c', 'b', 'd', 'e', 'a']
>>> msorted.inversions
5
>>> l = [5, 2, 3, 1, 4]
>>> s = msorted(l, reverse=True)
>>> s
[5, 4, 3, 2, 1]
>>> msorted.inversions
4
>>> l = ['e', 'b', 'c', 'a', 'd']
>>> d = {'a': 10,
... 'b': 4,
... 'c': 2,
... 'd': 5,
... 'e': 9}
>>> key = lambda x: d[x]
>>> s = msorted(l, key=key, reverse=True)
>>> s
['a', 'e', 'd', 'b', 'c']
>>> msorted.inversions
5
Un peu tard dans la soirée, mais je me suis dit que je mettrais mon chapeau dans le ring, ma solution semblant aller plus vite que celle des OP (sur ma machine, en tout cas):
# [Python 3]
def merge_sort(arr):
if len(arr) < 2:
return arr
half = len(arr) // 2
left = merge_sort(arr[:half])
right = merge_sort(arr[half:])
out = []
li = ri = 0 # index of next element from left, right halves
while True:
if li >= len(left): # left half is exhausted
out.extend(right[ri:])
break
if ri >= len(right): # right half is exhausted
out.extend(left[li:])
break
if left[li] < right[ri]:
out.append(left[li])
li += 1
else:
out.append(right[ri])
ri += 1
return out
Cela n'a pas de pop()
s lente, et une fois qu'un des demi-tableaux est épuisé, il étend immédiatement l'autre sur le tableau de sortie plutôt que de démarrer une nouvelle boucle.
Je sais que cela dépend de la machine, mais pour 100 000 éléments aléatoires (au-dessus de merge_sort()
par rapport à sorted()
de Python):
merge sort: 1.03605 seconds
Python sort: 0.045 seconds
Ratio merge / Python sort: 23.0229
Voici le CLRS Implementation:
def merge(arr, p, q, r):
n1 = q - p + 1
n2 = r - q
right, left = [], []
for i in range(n1):
left.append(arr[p + i])
for j in range(n2):
right.append(arr[q + j + 1])
left.append(float('inf'))
right.append(float('inf'))
i = j = 0
for k in range(p, r + 1):
if left[i] <= right[j]:
arr[k] = left[i]
i += 1
else:
arr[k] = right[j]
j += 1
def merge_sort(arr, p, r):
if p < r:
q = (p + r) // 2
merge_sort(arr, p, q)
merge_sort(arr, q + 1, r)
merge(arr, p, q, r)
if __== '__main__':
test = [5, 2, 4, 7, 1, 3, 2, 6]
merge_sort(test, 0, len(test) - 1)
print test
Résultat:
[1, 2, 2, 3, 4, 5, 6, 7]
def mergeSort(alist):
print("Splitting ",alist)
if len(alist)>1:
mid = len(alist)//2
lefthalf = alist[:mid]
righthalf = alist[mid:]
mergeSort(lefthalf)
mergeSort(righthalf)
i=0
j=0
k=0
while i < len(lefthalf) and j < len(righthalf):
if lefthalf[i] < righthalf[j]:
alist[k]=lefthalf[i]
i=i+1
else:
alist[k]=righthalf[j]
j=j+1
k=k+1
while i < len(lefthalf):
alist[k]=lefthalf[i]
i=i+1
k=k+1
while j < len(righthalf):
alist[k]=righthalf[j]
j=j+1
k=k+1
print("Merging ",alist)
alist = [54,26,93,17,77,31,44,55,20]
mergeSort(alist)
print(alist)
voici une autre solution
class MergeSort(object):
def _merge(self,left, right):
nl = len(left)
nr = len(right)
result = [0]*(nl+nr)
i=0
j=0
for k in range(len(result)):
if nl>i and nr>j:
if left[i] <= right[j]:
result[k]=left[i]
i+=1
else:
result[k]=right[j]
j+=1
Elif nl==i:
result[k] = right[j]
j+=1
else: #nr>j:
result[k] = left[i]
i+=1
return result
def sort(self,arr):
n = len(arr)
if n<=1:
return arr
left = self.sort(arr[:n/2])
right = self.sort(arr[n/2:] )
return self._merge(left, right)
def main():
import random
a= range(100000)
random.shuffle(a)
mr_clss = MergeSort()
result = mr_clss.sort(a)
#print result
if __== '__main__':
main()
et voici le temps d'exécution pour la liste avec 100000 éléments:
real 0m1.073s
user 0m1.053s
sys 0m0.017s
def merge(l1, l2, out=[]):
if l1==[]: return out+l2
if l2==[]: return out+l1
if l1[0]<l2[0]: return merge(l1[1:], l2, out+l1[0:1])
return merge(l1, l2[1:], out+l2[0:1])
def merge_sort(l): return (lambda h: l if h<1 else merge(merge_sort(l[:h]), merge_sort(l[h:])))(len(l)/2)
print(merge_sort([1,4,6,3,2,5,78,4,2,1,4,6,8]))
Beaucoup ont répondu correctement à cette question, ceci est juste une autre solution (bien que ma solution soit très similaire à Max Montana) mais j'ai quelques différences pour la mise en œuvre:
passons en revue l’idée générale ici avant d’arriver au code:
voici le code (testé avec python 3.7):
def merge(left,right):
result=[]
i,j=0,0
while i<len(left) and j<len(right):
if left[i] < right[j]:
result.append(left[i])
i+=1
else:
result.append(right[j])
j+=1
result.extend(left[i:]) # since we want to add each element and not the object list
result.extend(right[j:])
return result
def merge_sort(data):
if len(data)==1:
return data
middle=len(data)//2
left_data=merge_sort(data[:middle])
right_data=merge_sort(data[middle:])
return merge(left_data,right_data)
data=[100,5,200,3,100,4,8,9]
print(merge_sort(data))
def merge(x):
if len(x) == 1:
return x
else:
mid = int(len(x) / 2)
l = merge(x[:mid])
r = merge(x[mid:])
i = j = 0
result = []
while i < len(l) and j < len(r):
if l[i] < r[j]:
result.append(l[i])
i += 1
else:
result.append(r[j])
j += 1
result += l[i:]
result += r[j:]
return result
Essayez cette version récursive
def mergeList(l1,l2):
l3=[]
Tlen=len(l1)+len(l2)
inf= float("inf")
for i in range(Tlen):
print "l1= ",l1[0]," l2= ",l2[0]
if l1[0]<=l2[0]:
l3.append(l1[0])
del l1[0]
l1.append(inf)
else:
l3.append(l2[0])
del l2[0]
l2.append(inf)
return l3
def main():
l1=[2,10,7,6,8]
print mergeSort(breaklist(l1))
def breaklist(rawlist):
newlist=[]
for atom in rawlist:
print atom
list_atom=[atom]
newlist.append(list_atom)
return newlist
def mergeSort(inputList):
listlen=len(inputList)
if listlen ==1:
return inputList
else:
newlist=[]
if listlen % 2==0:
for i in range(listlen/2):
newlist.append(mergeList(inputList[2*i],inputList[2*i+1]))
else:
for i in range((listlen+1)/2):
if 2*i+1<listlen:
newlist.append(mergeList(inputList[2*i],inputList[2*i+1]))
else:
newlist.append(inputList[2*i])
return mergeSort(newlist)
if __== '__main__':
main()
Si vous changez votre code comme ça, ça va marcher.
def merge_sort(arr):
if len(arr) < 2:
return arr[:]
middle_of_arr = len(arr) / 2
left = arr[0:middle_of_arr]
right = arr[middle_of_arr:]
left_side = merge_sort(left)
right_side = merge_sort(right)
return merge(left_side, right_side)
def merge(left_side, right_side):
result = []
while len(left_side) > 0 or len(right_side) > 0:
if len(left_side) > 0 and len(right_side) > 0:
if left_side[0] <= right_side[0]:
result.append(left_side.pop(0))
else:
result.append(right_side.pop(0))
Elif len(left_side) > 0:
result.append(left_side.pop(0))
Elif len(right_side) > 0:
result.append(right_side.pop(0))
return result
arr = [6, 5, 4, 3, 2, 1]
# print merge_sort(arr)
# [1, 2, 3, 4, 5, 6]
def merge(a,low,mid,high):
l=a[low:mid+1]
r=a[mid+1:high+1]
#print(l,r)
k=0;i=0;j=0;
c=[0 for i in range(low,high+1)]
while(i<len(l) and j<len(r)):
if(l[i]<=r[j]):
c[k]=(l[i])
k+=1
i+=1
else:
c[k]=(r[j])
j+=1
k+=1
while(i<len(l)):
c[k]=(l[i])
k+=1
i+=1
while(j<len(r)):
c[k]=(r[j])
k+=1
j+=1
#print(c)
a[low:high+1]=c
def mergesort(a,low,high):
if(high>low):
mid=(low+high)//2
mergesort(a,low,mid)
mergesort(a,mid+1,high)
merge(a,low,mid,high)
a=[12,8,3,2,9,0]
mergesort(a,0,len(a)-1)
print(a)
Le code suivant apparaît à la fin (assez efficace) et est trié sur place en dépit du retour.
def mergesort(lis):
if len(lis) > 1:
left, right = map(lambda l: list(reversed(mergesort(l))), (lis[::2], lis[1::2]))
lis.clear()
while left and right:
lis.append(left.pop() if left[-1] < right[-1] else right.pop())
lis.extend(left[::-1])
lis.extend(right[::-1])
return lis