J'écris une application Python qui utilise les liaisons Python d'OpenCV pour détecter des marqueurs et traiter d'autres images. J'aimerais utiliser les modules CUDA d'OpenCV pour accélérer CUDA-certaines parties de mon application et j'ai remarqué dans leurs fichiers .hpp
qu'ils semblaient utiliser les macros d'exportation OpenCV pour Python et Java. Cependant, je ne semble pas pouvoir accéder à ces fonctions CUDA, même si je construis OpenCV WITH_CUDA=ON
.
Est-il nécessaire d'utiliser un wrapper tel que PyCUDA pour accéder aux fonctions du processeur graphique, telles que le seuil en cudaarithme? Ou bien ces fonctions accélérées par CUDA sont-elles déjà utilisées si j'appelle cv2.threshold () dans mon code Python (plutôt que l'implémentation standard basée sur le processeur)?
CV_EXPORTS double threshold(InputArray src, OutputArray dst, double thresh, double maxval, int type, Stream& stream = Stream::Null());
Les sous-modules que je vois pour cv2
sont les suivants:
cv2.cuda
, cv2.gpu
et cv2.cudaarithm
retournent tous avec une AttributeError
.
L'instruction CMake que je lance pour compiler OpenCV est la suivante:
cmake -DOPENCV_EXTRA_MODULES_PATH=/usr/local/lib/opencv_contrib/modules/ \
-D WITH_CUDA=ON -D CUDA_FAST_MATH=1 \
-D ENABLE_PRECOMPILED_HEADERS=OFF \
-D BUILD_TESTS=OFF -D BUILD_PERF_TESTS=OFF -D BUILD_EXAMPLES=OFF \
-D BUILD_opencv_Java=OFF \
-DBUILD_opencv_bgsegm=OFF -DBUILD_opencv_bioinspired=OFF -DBUILD_opencv_ccalib=OFF -DBUILD_opencv_cnn_3dobj=OFF -DBUILD_opencv_contrib_world=OFF -DBUILD_opencv_cvv=OFF -DBUILD_opencv_datasets=OFF -DBUILD_openc
v_dnn=OFF -DBUILD_opencv_dnns_easily_fooled=OFF -DBUILD_opencv_dpm=OFF -DBUILD_opencv_face=OFF -DBUILD_opencv_fuzzy=OFF -DBUILD_opencv_hdf=OFF -DBUILD_opencv_line_descriptor=OFF -DBUILD_opencv_matlab=OFF -DBUILD_o
pencv_optflow=OFF -DBUILD_opencv_plot=OFF -DBUILD_opencv_README.md=OFF -DBUILD_opencv_reg=OFF -DBUILD_opencv_rgbd=OFF -DBUILD_opencv_saliency=OFF -DBUILD_opencv_sfm=OFF -DBUILD_opencv_stereo=OFF -DBUILD_opencv_str
uctured_light=OFF -DBUILD_opencv_surface_matching=OFF -DBUILD_opencv_text=OFF -DBUILD_opencv_tracking=OFF -DBUILD_opencv_viz=OFF -DBUILD_opencv_xfeatures2d=OFF -DBUILD_opencv_ximgproc=OFF -DBUILD_opencv_xobjdetect
=OFF -DBUILD_opencv_xphoto=OFF ..
Donc, comme confirmé dans le fil de réponse et de commentaire avec @NAmorim, il n’existe aucune liaison Python accessible aux différents modules CUDA d’OpenCV .
J'ai pu contourner cette restriction en utilisant Cython pour accéder aux fonctions CUDA dont j'avais besoin et en implémentant la logique nécessaire pour convertir mes objets Python (principalement des tableaux NumPy) en objets OpenCV C/C++ et inversement.
J'ai d'abord écrit un fichier de définition Cython, GpuWrapper.pxd
. Le but de ce fichier est de faire référence à des classes et méthodes C/C++ externes, telles que les méthodes CUDA qui m’intéressent.
from libcpp cimport bool
from cpython.ref cimport PyObject
# References PyObject to OpenCV object conversion code borrowed from OpenCV's own conversion file, cv2.cpp
cdef extern from 'pyopencv_converter.cpp':
cdef PyObject* pyopencv_from(const Mat& m)
cdef bool pyopencv_to(PyObject* o, Mat& m)
cdef extern from 'opencv2/imgproc.hpp' namespace 'cv':
cdef enum InterpolationFlags:
INTER_NEAREST = 0
cdef enum ColorConversionCodes:
COLOR_BGR2GRAY
cdef extern from 'opencv2/core/core.hpp':
cdef int CV_8UC1
cdef int CV_32FC1
cdef extern from 'opencv2/core/core.hpp' namespace 'cv':
cdef cppclass Size_[T]:
Size_() except +
Size_(T width, T height) except +
T width
T height
ctypedef Size_[int] Size2i
ctypedef Size2i Size
cdef cppclass Scalar[T]:
Scalar() except +
Scalar(T v0) except +
cdef extern from 'opencv2/core/core.hpp' namespace 'cv':
cdef cppclass Mat:
Mat() except +
void create(int, int, int) except +
void* data
int rows
int cols
cdef extern from 'opencv2/core/cuda.hpp' namespace 'cv::cuda':
cdef cppclass GpuMat:
GpuMat() except +
void upload(Mat arr) except +
void download(Mat dst) const
cdef cppclass Stream:
Stream() except +
cdef extern from 'opencv2/cudawarping.hpp' namespace 'cv::cuda':
cdef void warpPerspective(GpuMat src, GpuMat dst, Mat M, Size dsize, int flags, int borderMode, Scalar borderValue, Stream& stream)
# Function using default values
cdef void warpPerspective(GpuMat src, GpuMat dst, Mat M, Size dsize, int flags)
Nous avons également besoin de la possibilité de convertir des objets Python en objets OpenCV. J'ai copié les quelques cent premières lignes du modules/python/src2/cv2.cpp
d'OpenCV. Vous pouvez trouver ce code ci-dessous en annexe.
Nous pouvons enfin écrire nos méthodes wrapper Cython pour appeler les fonctions CUDA d'OpenCV! Cela fait partie du fichier d'implémentation Cython, GpuWrapper.pyx
.
import numpy as np # Import Python functions, attributes, submodules of numpy
cimport numpy as np # Import numpy C/C++ API
def cudaWarpPerspectiveWrapper(np.ndarray[np.uint8_t, ndim=2] _src,
np.ndarray[np.float32_t, ndim=2] _M,
_size_Tuple,
int _flags=INTER_NEAREST):
# Create GPU/device InputArray for src
cdef Mat src_mat
cdef GpuMat src_gpu
pyopencv_to(<PyObject*> _src, src_mat)
src_gpu.upload(src_mat)
# Create CPU/Host InputArray for M
cdef Mat M_mat = Mat()
pyopencv_to(<PyObject*> _M, M_mat)
# Create Size object from size Tuple
# Note that size/shape in Python is handled in row-major-order -- therefore, width is [1] and height is [0]
cdef Size size = Size(<int> _size_Tuple[1], <int> _size_Tuple[0])
# Create empty GPU/device OutputArray for dst
cdef GpuMat dst_gpu = GpuMat()
warpPerspective(src_gpu, dst_gpu, M_mat, size, INTER_NEAREST)
# Get result of dst
cdef Mat dst_Host
dst_gpu.download(dst_Host)
cdef np.ndarray out = <np.ndarray> pyopencv_from(dst_Host)
return out
Après avoir exécuté un script de configuration pour cythoniser et compiler ce code (voir l’annexe), nous pouvons importer GpuWrapper en tant que module Python et exécuter cudaWarpPerspectiveWrapper
. Cela m'a permis d'exécuter le code via CUDA avec seulement un décalage de 0,34722222222222854% - assez excitant!
pyopencv_converter.cpp
#include <Python.h>
#include "numpy/ndarrayobject.h"
#include "opencv2/core/core.hpp"
static PyObject* opencv_error = 0;
// === FAIL MESSAGE ====================================================================================================
static int failmsg(const char *fmt, ...)
{
char str[1000];
va_list ap;
va_start(ap, fmt);
vsnprintf(str, sizeof(str), fmt, ap);
va_end(ap);
PyErr_SetString(PyExc_TypeError, str);
return 0;
}
struct ArgInfo
{
const char * name;
bool outputarg;
// more fields may be added if necessary
ArgInfo(const char * name_, bool outputarg_)
: name(name_)
, outputarg(outputarg_) {}
// to match with older pyopencv_to function signature
operator const char *() const { return name; }
};
// === THREADING =======================================================================================================
class PyAllowThreads
{
public:
PyAllowThreads() : _state(PyEval_SaveThread()) {}
~PyAllowThreads()
{
PyEval_RestoreThread(_state);
}
private:
PyThreadState* _state;
};
class PyEnsureGIL
{
public:
PyEnsureGIL() : _state(PyGILState_Ensure()) {}
~PyEnsureGIL()
{
PyGILState_Release(_state);
}
private:
PyGILState_STATE _state;
};
// === ERROR HANDLING ==================================================================================================
#define ERRWRAP2(expr) \
try \
{ \
PyAllowThreads allowThreads; \
expr; \
} \
catch (const cv::Exception &e) \
{ \
PyErr_SetString(opencv_error, e.what()); \
return 0; \
}
// === USING NAMESPACE CV ==============================================================================================
using namespace cv;
// === NUMPY ALLOCATOR =================================================================================================
class NumpyAllocator : public MatAllocator
{
public:
NumpyAllocator() { stdAllocator = Mat::getStdAllocator(); }
~NumpyAllocator() {}
UMatData* allocate(PyObject* o, int dims, const int* sizes, int type, size_t* step) const
{
UMatData* u = new UMatData(this);
u->data = u->origdata = (uchar*)PyArray_DATA((PyArrayObject*) o);
npy_intp* _strides = PyArray_STRIDES((PyArrayObject*) o);
for( int i = 0; i < dims - 1; i++ )
step[i] = (size_t)_strides[i];
step[dims-1] = CV_ELEM_SIZE(type);
u->size = sizes[0]*step[0];
u->userdata = o;
return u;
}
UMatData* allocate(int dims0, const int* sizes, int type, void* data, size_t* step, int flags, UMatUsageFlags usageFlags) const
{
if( data != 0 )
{
CV_Error(Error::StsAssert, "The data should normally be NULL!");
// probably this is safe to do in such extreme case
return stdAllocator->allocate(dims0, sizes, type, data, step, flags, usageFlags);
}
PyEnsureGIL gil;
int depth = CV_MAT_DEPTH(type);
int cn = CV_MAT_CN(type);
const int f = (int)(sizeof(size_t)/8);
int typenum = depth == CV_8U ? NPY_UBYTE : depth == CV_8S ? NPY_BYTE :
depth == CV_16U ? NPY_USHORT : depth == CV_16S ? NPY_SHORT :
depth == CV_32S ? NPY_INT : depth == CV_32F ? NPY_FLOAT :
depth == CV_64F ? NPY_DOUBLE : f*NPY_ULONGLONG + (f^1)*NPY_UINT;
int i, dims = dims0;
cv::AutoBuffer<npy_intp> _sizes(dims + 1);
for( i = 0; i < dims; i++ )
_sizes[i] = sizes[i];
if( cn > 1 )
_sizes[dims++] = cn;
PyObject* o = PyArray_SimpleNew(dims, _sizes, typenum);
if(!o)
CV_Error_(Error::StsError, ("The numpy array of typenum=%d, ndims=%d can not be created", typenum, dims));
return allocate(o, dims0, sizes, type, step);
}
bool allocate(UMatData* u, int accessFlags, UMatUsageFlags usageFlags) const
{
return stdAllocator->allocate(u, accessFlags, usageFlags);
}
void deallocate(UMatData* u) const
{
if(!u)
return;
PyEnsureGIL gil;
CV_Assert(u->urefcount >= 0);
CV_Assert(u->refcount >= 0);
if(u->refcount == 0)
{
PyObject* o = (PyObject*)u->userdata;
Py_XDECREF(o);
delete u;
}
}
const MatAllocator* stdAllocator;
};
// === ALLOCATOR INITIALIZATION ========================================================================================
NumpyAllocator g_numpyAllocator;
// === CONVERTOR FUNCTIONS =============================================================================================
template<typename T> static
bool pyopencv_to(PyObject* obj, T& p, const char* name = "<unknown>");
template<typename T> static
PyObject* pyopencv_from(const T& src);
enum { ARG_NONE = 0, ARG_MAT = 1, ARG_SCALAR = 2 };
// special case, when the convertor needs full ArgInfo structure
static bool pyopencv_to(PyObject* o, Mat& m, const ArgInfo info)
{
bool allowND = true;
if(!o || o == Py_None)
{
if( !m.data )
m.allocator = &g_numpyAllocator;
return true;
}
if( PyInt_Check(o) )
{
double v[] = {static_cast<double>(PyInt_AsLong((PyObject*)o)), 0., 0., 0.};
m = Mat(4, 1, CV_64F, v).clone();
return true;
}
if( PyFloat_Check(o) )
{
double v[] = {PyFloat_AsDouble((PyObject*)o), 0., 0., 0.};
m = Mat(4, 1, CV_64F, v).clone();
return true;
}
if( PyTuple_Check(o) )
{
int i, sz = (int)PyTuple_Size((PyObject*)o);
m = Mat(sz, 1, CV_64F);
for( i = 0; i < sz; i++ )
{
PyObject* oi = PyTuple_GET_ITEM(o, i);
if( PyInt_Check(oi) )
m.at<double>(i) = (double)PyInt_AsLong(oi);
else if( PyFloat_Check(oi) )
m.at<double>(i) = (double)PyFloat_AsDouble(oi);
else
{
failmsg("%s is not a numerical Tuple", info.name);
m.release();
return false;
}
}
return true;
}
if( !PyArray_Check(o) )
{
failmsg("%s is not a numpy array, neither a scalar", info.name);
return false;
}
PyArrayObject* oarr = (PyArrayObject*) o;
bool needcopy = false, needcast = false;
int typenum = PyArray_TYPE(oarr), new_typenum = typenum;
int type = typenum == NPY_UBYTE ? CV_8U :
typenum == NPY_BYTE ? CV_8S :
typenum == NPY_USHORT ? CV_16U :
typenum == NPY_SHORT ? CV_16S :
typenum == NPY_INT ? CV_32S :
typenum == NPY_INT32 ? CV_32S :
typenum == NPY_FLOAT ? CV_32F :
typenum == NPY_DOUBLE ? CV_64F : -1;
if( type < 0 )
{
if( typenum == NPY_INT64 || typenum == NPY_UINT64 || typenum == NPY_LONG )
{
needcopy = needcast = true;
new_typenum = NPY_INT;
type = CV_32S;
}
else
{
failmsg("%s data type = %d is not supported", info.name, typenum);
return false;
}
}
#ifndef CV_MAX_DIM
const int CV_MAX_DIM = 32;
#endif
int ndims = PyArray_NDIM(oarr);
if(ndims >= CV_MAX_DIM)
{
failmsg("%s dimensionality (=%d) is too high", info.name, ndims);
return false;
}
int size[CV_MAX_DIM+1];
size_t step[CV_MAX_DIM+1];
size_t elemsize = CV_ELEM_SIZE1(type);
const npy_intp* _sizes = PyArray_DIMS(oarr);
const npy_intp* _strides = PyArray_STRIDES(oarr);
bool ismultichannel = ndims == 3 && _sizes[2] <= CV_CN_MAX;
for( int i = ndims-1; i >= 0 && !needcopy; i-- )
{
// these checks handle cases of
// a) multi-dimensional (ndims > 2) arrays, as well as simpler 1- and 2-dimensional cases
// b) transposed arrays, where _strides[] elements go in non-descending order
// c) flipped arrays, where some of _strides[] elements are negative
// the _sizes[i] > 1 is needed to avoid spurious copies when NPY_RELAXED_STRIDES is set
if( (i == ndims-1 && _sizes[i] > 1 && (size_t)_strides[i] != elemsize) ||
(i < ndims-1 && _sizes[i] > 1 && _strides[i] < _strides[i+1]) )
needcopy = true;
}
if( ismultichannel && _strides[1] != (npy_intp)elemsize*_sizes[2] )
needcopy = true;
if (needcopy)
{
if (info.outputarg)
{
failmsg("Layout of the output array %s is incompatible with cv::Mat (step[ndims-1] != elemsize or step[1] != elemsize*nchannels)", info.name);
return false;
}
if( needcast ) {
o = PyArray_Cast(oarr, new_typenum);
oarr = (PyArrayObject*) o;
}
else {
oarr = PyArray_GETCONTIGUOUS(oarr);
o = (PyObject*) oarr;
}
_strides = PyArray_STRIDES(oarr);
}
// Normalize strides in case NPY_RELAXED_STRIDES is set
size_t default_step = elemsize;
for ( int i = ndims - 1; i >= 0; --i )
{
size[i] = (int)_sizes[i];
if ( size[i] > 1 )
{
step[i] = (size_t)_strides[i];
default_step = step[i] * size[i];
}
else
{
step[i] = default_step;
default_step *= size[i];
}
}
// handle degenerate case
if( ndims == 0) {
size[ndims] = 1;
step[ndims] = elemsize;
ndims++;
}
if( ismultichannel )
{
ndims--;
type |= CV_MAKETYPE(0, size[2]);
}
if( ndims > 2 && !allowND )
{
failmsg("%s has more than 2 dimensions", info.name);
return false;
}
m = Mat(ndims, size, type, PyArray_DATA(oarr), step);
m.u = g_numpyAllocator.allocate(o, ndims, size, type, step);
m.addref();
if( !needcopy )
{
Py_INCREF(o);
}
m.allocator = &g_numpyAllocator;
return true;
}
template<>
bool pyopencv_to(PyObject* o, Mat& m, const char* name)
{
return pyopencv_to(o, m, ArgInfo(name, 0));
}
template<>
PyObject* pyopencv_from(const Mat& m)
{
if( !m.data )
Py_RETURN_NONE;
Mat temp, *p = (Mat*)&m;
if(!p->u || p->allocator != &g_numpyAllocator)
{
temp.allocator = &g_numpyAllocator;
ERRWRAP2(m.copyTo(temp));
p = &temp;
}
PyObject* o = (PyObject*)p->u->userdata;
Py_INCREF(o);
return o;
}
setupGpuWrapper.py
import subprocess
import os
import numpy as np
from distutils.core import setup, Extension
from Cython.Build import cythonize
from Cython.Distutils import build_ext
"""
Run setup with the following command:
```
python setupGpuWrapper.py build_ext --inplace
```
"""
# Determine current directory of this setup file to find our module
CUR_DIR = os.path.dirname(__file__)
# Use pkg-config to determine library locations and include locations
opencv_libs_str = subprocess.check_output("pkg-config --libs opencv".split()).decode()
opencv_incs_str = subprocess.check_output("pkg-config --cflags opencv".split()).decode()
# Parse into usable format for Extension call
opencv_libs = [str(lib) for lib in opencv_libs_str.strip().split()]
opencv_incs = [str(inc) for inc in opencv_incs_str.strip().split()]
extensions = [
Extension('GpuWrapper',
sources=[os.path.join(CUR_DIR, 'GpuWrapper.pyx')],
language='c++',
include_dirs=[np.get_include()] + opencv_incs,
extra_link_args=opencv_libs)
]
setup(
cmdclass={'build_ext': build_ext},
name="GpuWrapper",
ext_modules=cythonize(extensions)
)
J'ai utilisé le moyen suivant pour accéder aux méthodes CUDA C++ d'OpenCV en Python:
J'ai créé un petit github repo pour démontrer le même
Ou bien ces fonctions accélérées par CUDA sont-elles déjà utilisées si j'appelle cv2.threshold () dans mon code Python (plutôt que l'implémentation standard basée sur le processeur)
Non, vous devez les appeler explicitement à partir du module accéléré par le GPU. L'appel cv2.threshold () exécutera simplement la version de la CPU.
Puisque l'API python d'OpenCV englobe des fonctions C++, son contrôle offre généralement des indications utiles sur l'emplacement des fonctions/modules.
Par exemple, dans this transition guide, vous pouvez voir les modifications apportées à l’API entre OpenCV 2.X et 3.X. Ici, le module GPU sur OpenCV 3.X est accessible via cv2.cuda et cv2.gpu sur les versions précédentes. Et le module cuda dans 3.X est divisé en plusieurs petits morceaux:
- cuda - Vision par ordinateur accélérée par CUDA
- cudaarithm - Opérations sur les matrices
- cudabgsegm - Segmentation d'arrière-plan
- cudacodec - Encodage/décodage vidéo
- cudafeatures2d - Détection de fonctionnalités et description
- cudafilters - Filtrage des images
- cudaimgproc - Traitement d'image
- cudalegacy - support de l'héritage
- cudaoptflow - Flux optique
- cudastereo - Correspondance stéréo
- cudawarping - Déformation d'image
- cudev - Couche de périphérique
Vous devriez rechercher ces modules dans cv2.