J'ai un pandas DataFrame composé de quelques lectures de capteur prises au fil du temps comme ceci:
diode1 diode2 diode3 diode4
Time
0.530 7 0 10 16
1.218 17 7 14 19
1.895 13 8 16 17
2.570 8 2 16 17
3.240 14 8 17 19
3.910 13 6 17 18
4.594 13 5 16 19
5.265 9 0 12 16
5.948 12 3 16 17
6.632 10 2 15 17
J'ai écrit du code pour ajouter une autre ligne avec les moyennes de chaque colonne:
# List of the averages for the test.
averages = [df[key].describe()['mean'] for key in df]
indexes = df.index.tolist()
indexes.append('mean')
df.reindex(indexes)
# Adding the mean row to the bottom of the DataFrame
i = 0
for key in df:
df.set_value('mean', key, averages[i])
i += 1
Cela me donne le résultat que je veux, qui est un DataFrame comme celui-ci:
diode1 diode2 diode3 diode4
Time
0.53 7.0 0.0 10.0 16.0
1.218 17.0 7.0 14.0 19.0
1.895 13.0 8.0 16.0 17.0
2.57 8.0 2.0 16.0 17.0
3.24 14.0 8.0 17.0 19.0
3.91 13.0 6.0 17.0 18.0
4.594 13.0 5.0 16.0 19.0
5.265 9.0 0.0 12.0 16.0
5.948 12.0 3.0 16.0 17.0
6.632 10.0 2.0 15.0 17.0
mean 11.6 4.1 14.9 17.5
Cependant, je suis sûr que ce n'est pas le moyen le plus efficace d'ajouter la ligne. J'ai essayé d'utiliser append avec les moyens enregistrés en tant que série pandas mais j'ai fini avec quelque chose comme ceci:
diode1 diode2 diode3 diode4 mean
0 7.0 0.0 10.0 14.0 NaN
1 9.0 0.0 10.0 15.0 NaN
2 10.0 5.0 14.0 20.0 NaN
3 6.0 0.0 7.0 14.0 NaN
4 7.0 0.0 10.0 15.0 NaN
5 7.0 0.0 8.0 14.0 NaN
6 7.0 0.0 11.0 14.0 NaN
7 7.0 0.0 2.0 11.0 NaN
8 2.0 0.0 4.0 12.0 NaN
9 4.0 0.0 0.0 6.0 NaN
10 NaN NaN NaN NaN [11.6, 4.1, 14.9, 17.5]
Je me demandais s'il y avait un moyen plus efficace d'ajouter une ligne avec l'index "moyenne" et les moyennes de chaque colonne au bas d'un pandas DataFrame.
Utilisez loc
pour réglage avec agrandissement :
df.loc['mean'] = df.mean()
La sortie résultante:
diode1 diode2 diode3 diode4
Time
0.53 7.0 0.0 10.0 16.0
1.218 17.0 7.0 14.0 19.0
1.895 13.0 8.0 16.0 17.0
2.57 8.0 2.0 16.0 17.0
3.24 14.0 8.0 17.0 19.0
3.91 13.0 6.0 17.0 18.0
4.594 13.0 5.0 16.0 19.0
5.265 9.0 0.0 12.0 16.0
5.948 12.0 3.0 16.0 17.0
6.632 10.0 2.0 15.0 17.0
mean 11.6 4.1 14.9 17.5