J'ai une liste de tuples en python contenant des données en 3 dimensions, où chaque tuple est sous la forme: (x, y, z, data_value), c'est-à-dire que j'ai des valeurs de données à chaque ( coordonnées x, y, z). Je voudrais faire un tracé de carte thermique 3D discret où les couleurs représentent la valeur de data_values dans ma liste de tuples. Ici, je donne un exemple d'une telle carte thermique pour un jeu de données 2D où j'ai un liste des tuples (x, y, data_value):
import matplotlib.pyplot as plt
from matplotlib import colors
import numpy as np
from random import randint
# x and y coordinates
x = np.array(range(10))
y = np.array(range(10,15))
data = np.zeros((len(y),len(x)))
# Generate some discrete data (1, 2 or 3) for each (x, y) pair
for i,yy in enumerate(y):
for j, xx in enumerate(x):
data[i,j] = randint(1,3)
# Map 1, 2 and 3 to 'Red', 'Green' qnd 'Blue', respectively
colormap = colors.ListedColormap(['Red', 'Green', 'Blue'])
colorbar_ticklabels = ['1', '2', '3']
# Use matshow to create a heatmap
fig, ax = plt.subplots()
ms = ax.matshow(data, cmap = colormap, vmin=data.min() - 0.5, vmax=data.max() + 0.5, Origin = 'lower')
# x and y axis ticks
ax.set_xticklabels([str(xx) for xx in x])
ax.set_yticklabels([str(yy) for yy in y])
ax.xaxis.tick_bottom()
# Put the x- qnd y-axis ticks at the middle of each cell
ax.set_xticks(np.arange(data.shape[1]), minor = False)
ax.set_yticks(np.arange(data.shape[0]), minor = False)
# Set custom ticks and ticklabels for color bar
cbar = fig.colorbar(ms,ticks = np.arange(np.min(data),np.max(data)+1))
cbar.ax.set_yticklabels(colorbar_ticklabels)
plt.show()
Cela génère un tracé comme celui-ci:
Comment puis-je faire un tracé similaire dans l'espace 3D (c'est-à-dire avoir un axe z), si mes données ont une troisième dimension. Par exemple, si
# x and y and z coordinates
x = np.array(range(10))
y = np.array(range(10,15))
z = np.array(range(15,20))
data = np.zeros((len(y),len(x), len(y)))
# Generate some random discrete data (1, 2 or 3) for each (x, y, z) triplet.
# Am I defining i, j and k correctly here?
for i,yy in enumerate(y):
for j, xx in enumerate(x):
for k, zz in enumerate(z):
data[i,j, k] = randint(1,3)
J'ai l'impression que plot_surface dans mplot3d devrait être en mesure de le faire, mais z dans l'entrée de cette fonction est essentiellement la valeur des données à la coordonnée (x, y), c'est-à-dire (x, y, z = data_value), qui est différent de ce que j'ai, c'est-à-dire (x, y, z, data_value).
Il semble que nous voulons vraiment avoir un jeu 3D Tetris ici ;-)
Voici donc un moyen de tracer des cubes de couleur différente pour remplir l'espace donné par les tableaux (x,y,z)
.
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm
import matplotlib.colorbar
import matplotlib.colors
def cuboid_data(center, size=(1,1,1)):
# code taken from
# http://stackoverflow.com/questions/30715083/python-plotting-a-wireframe-3d-cuboid?noredirect=1&lq=1
# suppose axis direction: x: to left; y: to inside; z: to upper
# get the (left, outside, bottom) point
o = [a - b / 2 for a, b in Zip(center, size)]
# get the length, width, and height
l, w, h = size
x = [[o[0], o[0] + l, o[0] + l, o[0], o[0]], # x coordinate of points in bottom surface
[o[0], o[0] + l, o[0] + l, o[0], o[0]], # x coordinate of points in upper surface
[o[0], o[0] + l, o[0] + l, o[0], o[0]], # x coordinate of points in outside surface
[o[0], o[0] + l, o[0] + l, o[0], o[0]]] # x coordinate of points in inside surface
y = [[o[1], o[1], o[1] + w, o[1] + w, o[1]], # y coordinate of points in bottom surface
[o[1], o[1], o[1] + w, o[1] + w, o[1]], # y coordinate of points in upper surface
[o[1], o[1], o[1], o[1], o[1]], # y coordinate of points in outside surface
[o[1] + w, o[1] + w, o[1] + w, o[1] + w, o[1] + w]] # y coordinate of points in inside surface
z = [[o[2], o[2], o[2], o[2], o[2]], # z coordinate of points in bottom surface
[o[2] + h, o[2] + h, o[2] + h, o[2] + h, o[2] + h], # z coordinate of points in upper surface
[o[2], o[2], o[2] + h, o[2] + h, o[2]], # z coordinate of points in outside surface
[o[2], o[2], o[2] + h, o[2] + h, o[2]]] # z coordinate of points in inside surface
return x, y, z
def plotCubeAt(pos=(0,0,0), c="b", alpha=0.1, ax=None):
# Plotting N cube elements at position pos
if ax !=None:
X, Y, Z = cuboid_data( (pos[0],pos[1],pos[2]) )
ax.plot_surface(X, Y, Z, color=c, rstride=1, cstride=1, alpha=0.1)
def plotMatrix(ax, x, y, z, data, cmap="jet", cax=None, alpha=0.1):
# plot a Matrix
norm = matplotlib.colors.Normalize(vmin=data.min(), vmax=data.max())
colors = lambda i,j,k : matplotlib.cm.ScalarMappable(norm=norm,cmap = cmap).to_rgba(data[i,j,k])
for i, xi in enumerate(x):
for j, yi in enumerate(y):
for k, zi, in enumerate(z):
plotCubeAt(pos=(xi, yi, zi), c=colors(i,j,k), alpha=alpha, ax=ax)
if cax !=None:
cbar = matplotlib.colorbar.ColorbarBase(cax, cmap=cmap,
norm=norm,
orientation='vertical')
cbar.set_ticks(np.unique(data))
# set the colorbar transparent as well
cbar.solids.set(alpha=alpha)
if __name__ == '__main__':
# x and y and z coordinates
x = np.array(range(10))
y = np.array(range(10,15))
z = np.array(range(15,20))
data_value = np.random.randint(1,4, size=(len(x), len(y), len(z)) )
print data_value.shape
fig = plt.figure(figsize=(10,4))
ax = fig.add_axes([0.1, 0.1, 0.7, 0.8], projection='3d')
ax_cb = fig.add_axes([0.8, 0.3, 0.05, 0.45])
ax.set_aspect('equal')
plotMatrix(ax, x, y, z, data_value, cmap="jet", cax = ax_cb)
plt.savefig(__file__+".png")
plt.show()
Je trouve vraiment difficile de voir quoi que ce soit ici, mais cela peut être une question de goût et maintenant j'espère aussi répondre à la question.
Il semble que j'ai mal compris la question. Par conséquent, ce qui suit ne répond pas à la question. Pour le moment, je le laisse ici, pour garder les commentaires ci-dessous disponibles pour les autres.
Je pense plot_surface
convient pour la tâche spécifiée.
Essentiellement, vous traceriez une surface avec la forme donnée par vos points X,Y,Z
en 3D et colorisez-le en utilisant les valeurs de data_values
comme indiqué dans le code ci-dessous.
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure()
ax = fig.gca(projection='3d')
# as plot_surface needs 2D arrays as input
x = np.arange(10)
y = np.array(range(10,15))
# we make a meshgrid from the x,y data
X, Y = np.meshgrid(x, y)
Z = np.sin(np.sqrt(X**2 + Y**2))
# data_value shall be represented by color
data_value = np.random.Rand(len(y), len(x))
# map the data to rgba values from a colormap
colors = cm.ScalarMappable(cmap = "viridis").to_rgba(data_value)
# plot_surface with points X,Y,Z and data_value as colors
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, facecolors=colors,
linewidth=0, antialiased=True)
plt.show()