web-dev-qa-db-fra.com

Charger CSV dans Pandas MultiIndex DataFrame

J'ai un fichier CSV de 719 Mo qui ressemble à:

from, to, dep, freq, arr, code, mode   (header row)
RGBOXFD,RGBPADTON,127,0,27,99999,2
RGBOXFD,RGBPADTON,127,0,33,99999,2
RGBOXFD,RGBRDLEY,127,0,1425,99999,2
RGBOXFD,RGBCHOLSEY,127,0,52,99999,2
RGBOXFD,RGBMDNHEAD,127,0,91,99999,2
RGBDIDCOTP,RGBPADTON,127,0,46,99999,2
RGBDIDCOTP,RGBPADTON,127,0,3,99999,2
RGBDIDCOTP,RGBCHOLSEY,127,0,61,99999,2
RGBDIDCOTP,RGBRDLEY,127,0,1430,99999,2
RGBDIDCOTP,RGBPADTON,127,0,115,99999,2
and so on... 

Je veux charger dans un pandas DataFrame. Maintenant je sais qu'il y a une charge de la méthode csv:

 r = pd.DataFrame.from_csv('test_data2.csv')

Mais je veux spécifiquement le charger en tant que DataFrame 'MultiIndex' d'où et vers les index:

Donc, se retrouver avec:

                   dep, freq, arr, code, mode
RGBOXFD RGBPADTON  127     0   27  99999    2
        RGBRDLEY   127     0   33  99999    2
        RGBCHOLSEY 127     0 1425  99999    2
        RGBMDNHEAD 127     0 1525  99999    2

etc. Je ne sais pas comment faire ça?

28
Handloomweaver

Vous pouvez utiliser pd.read_csv :

>>> df = pd.read_csv("test_data2.csv", index_col=[0,1], skipinitialspace=True)
>>> df
                       dep  freq   arr   code  mode
from       to                                      
RGBOXFD    RGBPADTON   127     0    27  99999     2
           RGBPADTON   127     0    33  99999     2
           RGBRDLEY    127     0  1425  99999     2
           RGBCHOLSEY  127     0    52  99999     2
           RGBMDNHEAD  127     0    91  99999     2
RGBDIDCOTP RGBPADTON   127     0    46  99999     2
           RGBPADTON   127     0     3  99999     2
           RGBCHOLSEY  127     0    61  99999     2
           RGBRDLEY    127     0  1430  99999     2
           RGBPADTON   127     0   115  99999     2

où j'ai utilisé skipinitialspace=True pour se débarrasser de ces espaces ennuyeux dans la ligne d'en-tête.

33
DSM

from_csv () fonctionne de la même manière:

import pandas as pd

df = pd.DataFrame.from_csv(
    'data.txt',
    index_col = [0, 1]
)

print df

--output:--
                        dep   freq   arr   code   mode
from        to                                        
RGBOXFD    RGBPADTON    127      0    27  99999      2
           RGBPADTON    127      0    33  99999      2
           RGBRDLEY     127      0  1425  99999      2
           RGBCHOLSEY   127      0    52  99999      2
           RGBMDNHEAD   127      0    91  99999      2
RGBDIDCOTP RGBPADTON    127      0    46  99999      2
           RGBPADTON    127      0     3  99999      2
           RGBCHOLSEY   127      0    61  99999      2
           RGBRDLEY     127      0  1430  99999      2
           RGBPADTON    127      0   115  99999      2

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.from_csv.html#pandas.DataFrame.from_csv

De cette discussion,

https://github.com/pydata/pandas/issues/4916

il semble que read_csv () ait été implémenté pour vous permettre de définir plus d'options, ce qui rend from_csv () superflu.

2
7stud