J'essaie de trouver un moyen efficace d'analyser des fichiers contenant des lignes de largeur fixe. Par exemple, les 20 premiers caractères représentent une colonne, à partir de 21h30 une autre, etc.
En supposant que la ligne contienne 100 caractères, quel serait le moyen efficace d’analyser une ligne en plusieurs composants?
Je pourrais utiliser le découpage de chaîne par ligne, mais c'est un peu moche si la ligne est grande. Existe-t-il d'autres méthodes rapides?
Utiliser le module struct
de la bibliothèque standard Python serait assez simple et extrêmement rapide puisqu'il est écrit en C.
Voici comment cela pourrait être utilisé pour faire ce que vous voulez. Il permet également d'ignorer les colonnes de caractères en spécifiant des valeurs négatives pour le nombre de caractères du champ.
import struct
fieldwidths = (2, -10, 24) # negative widths represent ignored padding fields
fmtstring = ' '.join('{}{}'.format(abs(fw), 'x' if fw < 0 else 's')
for fw in fieldwidths)
fieldstruct = struct.Struct(fmtstring)
parse = fieldstruct.unpack_from
print('fmtstring: {!r}, recsize: {} chars'.format(fmtstring, fieldstruct.size))
line = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789\n'
fields = parse(line)
print('fields: {}'.format(fields))
Sortie:
fmtstring: '2s 10x 24s', recsize: 36 chars
fields: ('AB', 'MNOPQRSTUVWXYZ0123456789')
Les modifications suivantes l’adapteraient fonctionner en Python 2 ou 3 (et gérer l’entrée Unicode):
import sys
fieldstruct = struct.Struct(fmtstring)
if sys.version_info[0] < 3:
parse = fieldstruct.unpack_from
else:
# converts unicode input to byte string and results back to unicode string
unpack = fieldstruct.unpack_from
parse = lambda line: Tuple(s.decode() for s in unpack(line.encode()))
Voici un moyen de le faire avec des tranches de ficelle, comme vous le pensiez, mais craigniez que cela ne devienne trop moche. La bonne chose à ce sujet est que, en plus de ne pas être si laid, il fonctionne sans changement en Python 2 et 3, en plus de pouvoir gérer les chaînes Unicode. Je ne l'ai pas évalué, mais je soupçonne qu'il pourrait être compétitif avec la version rapide du module struct
. Il pourrait être légèrement accéléré en supprimant la possibilité d'avoir des champs de remplissage.
try:
from itertools import izip_longest # added in Py 2.6
except ImportError:
from itertools import Zip_longest as izip_longest # name change in Py 3.x
try:
from itertools import accumulate # added in Py 3.2
except ImportError:
def accumulate(iterable):
'Return running totals (simplified version).'
total = next(iterable)
yield total
for value in iterable:
total += value
yield total
def make_parser(fieldwidths):
cuts = Tuple(cut for cut in accumulate(abs(fw) for fw in fieldwidths))
pads = Tuple(fw < 0 for fw in fieldwidths) # bool values for padding fields
flds = Tuple(izip_longest(pads, (0,)+cuts, cuts))[:-1] # ignore final one
parse = lambda line: Tuple(line[i:j] for pad, i, j in flds if not pad)
# optional informational function attributes
parse.size = sum(abs(fw) for fw in fieldwidths)
parse.fmtstring = ' '.join('{}{}'.format(abs(fw), 'x' if fw < 0 else 's')
for fw in fieldwidths)
return parse
line = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789\n'
fieldwidths = (2, -10, 24) # negative widths represent ignored padding fields
parse = make_parser(fieldwidths)
fields = parse(line)
print('format: {!r}, rec size: {} chars'.format(parse.fmtstring, parse.size))
print('fields: {}'.format(fields))
Sortie:
format: '2s 10x 24s', rec size: 36 chars
fields: ('AB', 'MNOPQRSTUVWXYZ0123456789')
Je ne suis pas vraiment sûr que ce soit efficace, mais il devrait être lisible (au lieu de découper manuellement). J'ai défini une fonction slices
qui obtient une longueur de chaîne et de colonne et renvoie les sous-chaînes. J'en ai fait un générateur, donc pour les très longues lignes, il ne crée pas de liste temporaire de sous-chaînes.
def slices(s, *args):
position = 0
for length in args:
yield s[position:position + length]
position += length
Exemple
In [32]: list(slices('abcdefghijklmnopqrstuvwxyz0123456789', 2))
Out[32]: ['ab']
In [33]: list(slices('abcdefghijklmnopqrstuvwxyz0123456789', 2, 10, 50))
Out[33]: ['ab', 'cdefghijkl', 'mnopqrstuvwxyz0123456789']
In [51]: d,c,h = slices('dogcathouse', 3, 3, 5)
In [52]: d,c,h
Out[52]: ('dog', 'cat', 'house')
Mais je pense que l’avantage d’un générateur est perdu si vous avez besoin de toutes les colonnes en même temps. Ce qui est avantageux, c’est lorsque vous souhaitez traiter les colonnes une à une, par exemple en boucle.
Deux autres options plus faciles et plus jolies que les solutions déjà mentionnées:
Le premier utilise des pandas:
import pandas as pd
path = 'filename.txt'
# Using Pandas with a column specification
col_specification = [(0, 20), (21, 30), (31, 50), (51, 100)]
data = pd.read_fwf(path, colspecs=col_specification)
Et la deuxième option utilisant numpy.loadtxt:
import numpy as np
# Using NumPy and letting it figure it out automagically
data_also = np.loadtxt(path)
Cela dépend vraiment de la manière dont vous voulez utiliser vos données.
Le code ci-dessous donne un aperçu de ce que vous voudrez peut-être faire si vous avez des tâches sérieuses de manipulation de fichiers à largeur de colonne fixe.
"Sérieux" = plusieurs types d'enregistrement dans chacun de plusieurs types de fichiers, enregistre jusqu'à 1000 octets, le concepteur de la mise en page et le producteur/consommateur "opposé" est un ministère avec une attitude. dans un fichier, ...
Caractéristiques: précompile les formats de structure. Ignore les colonnes indésirables. Convertit les chaînes d'entrée en types de données requis (esquisse sans traitement des erreurs). Convertit les enregistrements en instances d'objet (ou dict, ou en tuples nommés si vous préférez).
Code:
import struct, datetime, io, pprint
# functions for converting input fields to usable data
cnv_text = rstrip
cnv_int = int
cnv_date_dmy = lambda s: datetime.datetime.strptime(s, "%d%m%Y") # ddmmyyyy
# etc
# field specs (field name, start pos (1-relative), len, converter func)
fieldspecs = [
('surname', 11, 20, cnv_text),
('given_names', 31, 20, cnv_text),
('birth_date', 51, 8, cnv_date_dmy),
('start_date', 71, 8, cnv_date_dmy),
]
fieldspecs.sort(key=lambda x: x[1]) # just in case
# build the format for struct.unpack
unpack_len = 0
unpack_fmt = ""
for fieldspec in fieldspecs:
start = fieldspec[1] - 1
end = start + fieldspec[2]
if start > unpack_len:
unpack_fmt += str(start - unpack_len) + "x"
unpack_fmt += str(end - start) + "s"
unpack_len = end
field_indices = range(len(fieldspecs))
print unpack_len, unpack_fmt
unpacker = struct.Struct(unpack_fmt).unpack_from
class Record(object):
pass
# or use named tuples
raw_data = """\
....v....1....v....2....v....3....v....4....v....5....v....6....v....7....v....8
Featherstonehaugh Algernon Marmaduke 31121969 01012005XX
"""
f = cStringIO.StringIO(raw_data)
headings = f.next()
for line in f:
# The guts of this loop would of course be hidden away in a function/method
# and could be made less ugly
raw_fields = unpacker(line)
r = Record()
for x in field_indices:
setattr(r, fieldspecs[x][0], fieldspecs[x][3](raw_fields[x]))
pprint.pprint(r.__dict__)
print "Customer name:", r.given_names, r.surname
Sortie:
78 10x20s20s8s12x8s
{'birth_date': datetime.datetime(1969, 12, 31, 0, 0),
'given_names': 'Algernon Marmaduke',
'start_date': datetime.datetime(2005, 1, 1, 0, 0),
'surname': 'Featherstonehaugh'}
Customer name: Algernon Marmaduke Featherstonehaugh
> str = '1234567890'
> w = [0,2,5,7,10]
> [ str[ w[i-1] : w[i] ] for i in range(1,len(w)) ]
['12', '345', '67', '890']
Voici un module simple pour Python 3, basé sur La réponse de John Machin - s'adapte au besoin :)
"""
fixedwidth
Parse and iterate through a fixedwidth text file, returning record objects.
Adapted from https://stackoverflow.com/a/4916375/243392
USAGE
import fixedwidth, pprint
# define the fixed width fields we want
# fieldspecs is a list of [name, description, start, width, type] arrays.
fieldspecs = [
["FILEID", "File Identification", 1, 6, "A/N"],
["STUSAB", "State/U.S. Abbreviation (USPS)", 7, 2, "A"],
["SUMLEV", "Summary Level", 9, 3, "A/N"],
["LOGRECNO", "Logical Record Number", 19, 7, "N"],
["POP100", "Population Count (100%)", 30, 9, "N"],
]
# define the fieldtype conversion functions
fieldtype_fns = {
'A': str.rstrip,
'A/N': str.rstrip,
'N': int,
}
# iterate over record objects in the file
with open(f, 'rb'):
for record in fixedwidth.reader(f, fieldspecs, fieldtype_fns):
pprint.pprint(record.__dict__)
# output:
{'FILEID': 'SF1ST', 'LOGRECNO': 2, 'POP100': 1, 'STUSAB': 'TX', 'SUMLEV': '040'}
{'FILEID': 'SF1ST', 'LOGRECNO': 3, 'POP100': 2, 'STUSAB': 'TX', 'SUMLEV': '040'}
...
"""
import struct, io
# fieldspec columns
iName, iDescription, iStart, iWidth, iType = range(5)
def get_struct_unpacker(fieldspecs):
"""
Build the format string for struct.unpack to use, based on the fieldspecs.
fieldspecs is a list of [name, description, start, width, type] arrays.
Returns a string like "6s2s3s7x7s4x9s".
"""
unpack_len = 0
unpack_fmt = ""
for fieldspec in fieldspecs:
start = fieldspec[iStart] - 1
end = start + fieldspec[iWidth]
if start > unpack_len:
unpack_fmt += str(start - unpack_len) + "x"
unpack_fmt += str(end - start) + "s"
unpack_len = end
struct_unpacker = struct.Struct(unpack_fmt).unpack_from
return struct_unpacker
class Record(object):
pass
# or use named tuples
def reader(f, fieldspecs, fieldtype_fns):
"""
Wrap a fixedwidth file and return records according to the given fieldspecs.
fieldspecs is a list of [name, description, start, width, type] arrays.
fieldtype_fns is a dictionary of functions used to transform the raw string values,
one for each type.
"""
# make sure fieldspecs are sorted properly
fieldspecs.sort(key=lambda fieldspec: fieldspec[iStart])
struct_unpacker = get_struct_unpacker(fieldspecs)
field_indices = range(len(fieldspecs))
for line in f:
raw_fields = struct_unpacker(line) # split line into field values
record = Record()
for i in field_indices:
fieldspec = fieldspecs[i]
fieldname = fieldspec[iName]
s = raw_fields[i].decode() # convert raw bytes to a string
fn = fieldtype_fns[fieldspec[iType]] # get conversion function
value = fn(s) # convert string to value (eg to an int)
setattr(record, fieldname, value)
yield record
if __name__=='__main__':
# test module
import pprint, io
# define the fields we want
# fieldspecs are [name, description, start, width, type]
fieldspecs = [
["FILEID", "File Identification", 1, 6, "A/N"],
["STUSAB", "State/U.S. Abbreviation (USPS)", 7, 2, "A"],
["SUMLEV", "Summary Level", 9, 3, "A/N"],
["LOGRECNO", "Logical Record Number", 19, 7, "N"],
["POP100", "Population Count (100%)", 30, 9, "N"],
]
# define a conversion function for integers
def to_int(s):
"""
Convert a numeric string to an integer.
Allows a leading ! as an indicator of missing or uncertain data.
Returns None if no data.
"""
try:
return int(s)
except:
try:
return int(s[1:]) # ignore a leading !
except:
return None # assume has a leading ! and no value
# define the conversion fns
fieldtype_fns = {
'A': str.rstrip,
'A/N': str.rstrip,
'N': to_int,
# 'N': int,
# 'D': lambda s: datetime.datetime.strptime(s, "%d%m%Y"), # ddmmyyyy
# etc
}
# define a fixedwidth sample
sample = """\
SF1ST TX04089000 00000023748 1
SF1ST TX04090000 00000033748! 2
SF1ST TX04091000 00000043748!
"""
sample_data = sample.encode() # convert string to bytes
file_like = io.BytesIO(sample_data) # create a file-like wrapper around bytes
# iterate over record objects in the file
for record in reader(file_like, fieldspecs, fieldtype_fns):
# print(record)
pprint.pprint(record.__dict__)
Couper les cordes ne doit pas forcément être laid tant que vous le gardez organisé. Pensez à stocker vos largeurs de champ dans un dictionnaire, puis à utiliser les noms associés pour créer un objet:
from collections import OrderedDict
class Entry:
def __init__(self, line):
name2width = OrderedDict()
name2width['foo'] = 2
name2width['bar'] = 3
name2width['baz'] = 2
pos = 0
for name, width in name2width.items():
val = line[pos : pos + width]
if len(val) != width:
raise ValueError("not enough characters: \'{}\'".format(line))
setattr(self, name, val)
pos += width
file = "ab789yz\ncd987wx\nef555uv"
entry = []
for line in file.split('\n'):
entry.append(Entry(line))
print(entry[1].bar) # output: 987
C'est comment j'ai résolu avec un dictionnaire qui contient où les champs commencent et finissent. Donner des points de début et de fin m'aidait également à gérer les modifications dans la longueur de la colonne.
# fixed length
# '---------- ------- ----------- -----------'
line = '20.06.2019 myname active mydevice '
SLICES = {'date_start': 0,
'date_end': 10,
'name_start': 11,
'name_end': 18,
'status_start': 19,
'status_end': 30,
'device_start': 31,
'device_end': 42}
def get_values_as_dict(line, SLICES):
values = {}
key_list = {key.split("_")[0] for key in SLICES.keys()}
for key in key_list:
values[key] = line[SLICES[key+"_start"]:SLICES[key+"_end"]].strip()
return values
>>> print (get_values_as_dict(line,SLICES))
{'status': 'active', 'name': 'myname', 'date': '20.06.2019', 'device': 'mydevice'}
Voici ce que NumPy utilise sous le capot (beaucoup simplifié, mais pourtant - ce code se trouve dans le LineSplitter class
dans le _iotools module
):
import numpy as np
DELIMITER = (20, 10, 10, 20, 10, 10, 20)
idx = np.cumsum([0] + list(DELIMITER))
slices = [slice(i, j) for (i, j) in Zip(idx[:-1], idx[1:])]
def parse(line):
return [line[s] for s in slices]
Il ne gère pas les délimiteurs négatifs pour ignorer la colonne, il n'est donc pas aussi polyvalent que struct
, mais est plus rapide.
Étant donné que mon ancien travail traite souvent 1 million de lignes de données de largeur de bande fixe, j'ai effectué des recherches sur ce problème lorsque j'ai commencé à utiliser Python.
Il existe 2 types de FixedWidth
Si la chaîne de ressources est entièrement composée de caractères ascii, alors ASCII FixedWidth = Unicode FixedWidth
Heureusement, chaîne et octet sont différents dans py3, ce qui évite beaucoup de confusion lors de l'utilisation de caractères codés sur deux octets (par exemple, gbk, big5, euc-jp, shift-jis, etc.).
Pour le traitement de "ASCII FixedWidth", la chaîne est généralement convertie en octets, puis fractionnée.
Sans importer des modules tiers
totalLineCount = 1 million, lineLength = 800 octets, FixedWidthArgs = (10,25,4, ....), j’ai divisé la ligne de cinq façons différentes et obtenu la conclusion suivante:
slice(bytes)
est plus rapide que slice(string)
Lorsque vous traitez avec des fichiers volumineux, nous utilisons souvent with open ( file, "rb") as f:
.
La méthode parcourt l’un des fichiers ci-dessus, environ 2,4 secondes.
Je pense que le gestionnaire approprié, qui traite 1 million de lignes de données, scinde chaque ligne en 20 champs et prend moins de 2,4 secondes.
Je constate seulement que stuct
et itemgetter
satisfont aux exigences
ps: pour un affichage normal, j'ai converti unicode str en octets . Si vous êtes dans un environnement à double octet, vous n'avez pas besoin de le faire.
from itertools import accumulate
from operator import itemgetter
def oprt_parser(sArgs):
sum_arg = Tuple(accumulate(abs(i) for i in sArgs))
# Negative parameter field index
cuts = Tuple(i for i,num in enumerate(sArgs) if num < 0)
# Get slice args and Ignore fields of negative length
ig_Args = Tuple(item for i, item in enumerate(Zip((0,)+sum_arg,sum_arg)) if i not in cuts)
# Generate `operator.itemgetter` object
oprtObj =itemgetter(*[slice(s,e) for s,e in ig_Args])
return oprtObj
lineb = b'abcdefghijklmnopqrstuvwxyz\xb0\xa1\xb2\xbb\xb4\xd3\xb5\xc4\xb6\xee\xb7\xa2\xb8\xf6\xba\xcd0123456789'
line = lineb.decode("GBK")
# Unicode Fixed Width
fieldwidthsU = (13, -13, 4, -4, 5,-5) # Negative width fields is ignored
# ASCII Fixed Width
fieldwidths = (13, -13, 8, -8, 5,-5) # Negative width fields is ignored
# Unicode FixedWidth processing
parse = oprt_parser(fieldwidthsU)
fields = parse(line)
print('Unicode FixedWidth','fields: {}'.format(Tuple(map(lambda s: s.encode("GBK"), fields))))
# ASCII FixedWidth processing
parse = oprt_parser(fieldwidths)
fields = parse(lineb)
print('ASCII FixedWidth','fields: {}'.format(fields))
line = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789\n'
fieldwidths = (2, -10, 24)
parse = oprt_parser(fieldwidths)
fields = parse(line)
print(f"fields: {fields}")
Sortie:
Unicode FixedWidth fields: (b'abcdefghijklm', b'\xb0\xa1\xb2\xbb\xb4\xd3\xb5\xc4', b'01234')
ASCII FixedWidth fields: (b'abcdefghijklm', b'\xb0\xa1\xb2\xbb\xb4\xd3\xb5\xc4', b'01234')
fields: ('AB', 'MNOPQRSTUVWXYZ0123456789')
oprt_parser
est 4x make_parser
(liste compréhensions + slice)
Au cours de la recherche, il a été constaté que lorsque la vitesse du processeur est plus rapide, il semble que l'efficacité de la méthode re
augmente plus rapidement.
Comme je n’ai pas d’ordinateurs plus nombreux et de meilleure qualité à tester, donnez mon code de test; si cela vous intéresse, vous pouvez le tester avec un ordinateur plus rapide.
Environnement d'exécution:
import timeit
import time
import re
from itertools import accumulate
from operator import itemgetter
def eff2(stmt,onlyNum= False,showResult=False):
'''test function'''
if onlyNum:
rl = timeit.repeat(stmt=stmt,repeat=roundI,number=timesI,globals=globals())
avg = sum(rl) / len(rl)
return f"{avg * (10 ** 6)/timesI:0.4f}"
else:
rl = timeit.repeat(stmt=stmt,repeat=10,number=1000,globals=globals())
avg = sum(rl) / len(rl)
print(f"【{stmt}】")
print(f"\tquick avg = {avg * (10 ** 6)/1000:0.4f} s/million")
if showResult:
print(f"\t Result = {eval(stmt)}\n\t timelist = {rl}\n")
else:
print("")
def upDouble(argList,argRate):
return [c*argRate for c in argList]
tbStr = "000000001111000002222真2233333333000000004444444QAZ55555555000000006666666ABC这些事中文字abcdefghijk"
tbBytes = tbStr.encode("GBK")
a20 = (4,4,2,2,2,3,2,2, 2 ,2,8,8,7,3,8,8,7,3, 12 ,11)
a20U = (4,4,2,2,2,3,2,2, 1 ,2,8,8,7,3,8,8,7,3, 6 ,11)
Slng = 800
rateS = Slng // 100
tStr = "".join(upDouble(tbStr , rateS))
tBytes = tStr.encode("GBK")
spltArgs = upDouble( a20 , rateS)
spltArgsU = upDouble( a20U , rateS)
testList = []
timesI = 100000
roundI = 5
print(f"test round = {roundI} timesI = {timesI} sourceLng = {len(tStr)} argFieldCount = {len(spltArgs)}")
print(f"pure str \n{''.ljust(60,'-')}")
# ==========================================
def str_parser(sArgs):
def prsr(oStr):
r = []
r_ap = r.append
stt=0
for lng in sArgs:
end = stt + lng
r_ap(oStr[stt:end])
stt = end
return Tuple(r)
return prsr
Str_P = str_parser(spltArgsU)
# eff2("Str_P(tStr)")
testList.append("Str_P(tStr)")
print(f"pure bytes \n{''.ljust(60,'-')}")
# ==========================================
def byte_parser(sArgs):
def prsr(oBytes):
r, stt = [], 0
r_ap = r.append
for lng in sArgs:
end = stt + lng
r_ap(oBytes[stt:end])
stt = end
return r
return prsr
Byte_P = byte_parser(spltArgs)
# eff2("Byte_P(tBytes)")
testList.append("Byte_P(tBytes)")
# re,bytes
print(f"re compile object \n{''.ljust(60,'-')}")
# ==========================================
def rebc_parser(sArgs,otype="b"):
re_Args = "".join([f"(.{{{n}}})" for n in sArgs])
if otype == "b":
rebc_Args = re.compile(re_Args.encode("GBK"))
else:
rebc_Args = re.compile(re_Args)
def prsr(oBS):
return rebc_Args.match(oBS).groups()
return prsr
Rebc_P = rebc_parser(spltArgs)
# eff2("Rebc_P(tBytes)")
testList.append("Rebc_P(tBytes)")
Rebc_Ps = rebc_parser(spltArgsU,"s")
# eff2("Rebc_Ps(tStr)")
testList.append("Rebc_Ps(tStr)")
print(f"struct \n{''.ljust(60,'-')}")
# ==========================================
import struct
def struct_parser(sArgs):
struct_Args = " ".join(map(lambda x: str(x) + "s", sArgs))
def prsr(oBytes):
return struct.unpack(struct_Args, oBytes)
return prsr
Struct_P = struct_parser(spltArgs)
# eff2("Struct_P(tBytes)")
testList.append("Struct_P(tBytes)")
print(f"List Comprehensions + slice \n{''.ljust(60,'-')}")
# ==========================================
import itertools
def slice_parser(sArgs):
tl = Tuple(itertools.accumulate(sArgs))
slice_Args = Tuple(Zip((0,)+tl,tl))
def prsr(oBytes):
return [oBytes[s:e] for s, e in slice_Args]
return prsr
Slice_P = slice_parser(spltArgs)
# eff2("Slice_P(tBytes)")
testList.append("Slice_P(tBytes)")
def sliceObj_parser(sArgs):
tl = Tuple(itertools.accumulate(sArgs))
tl2 = Tuple(Zip((0,)+tl,tl))
sliceObj_Args = Tuple(slice(s,e) for s,e in tl2)
def prsr(oBytes):
return [oBytes[so] for so in sliceObj_Args]
return prsr
SliceObj_P = sliceObj_parser(spltArgs)
# eff2("SliceObj_P(tBytes)")
testList.append("SliceObj_P(tBytes)")
SliceObj_Ps = sliceObj_parser(spltArgsU)
# eff2("SliceObj_Ps(tStr)")
testList.append("SliceObj_Ps(tStr)")
print(f"operator.itemgetter + slice object \n{''.ljust(60,'-')}")
# ==========================================
def oprt_parser(sArgs):
sum_arg = Tuple(accumulate(abs(i) for i in sArgs))
cuts = Tuple(i for i,num in enumerate(sArgs) if num < 0)
ig_Args = Tuple(item for i,item in enumerate(Zip((0,)+sum_arg,sum_arg)) if i not in cuts)
oprtObj =itemgetter(*[slice(s,e) for s,e in ig_Args])
return oprtObj
Oprt_P = oprt_parser(spltArgs)
# eff2("Oprt_P(tBytes)")
testList.append("Oprt_P(tBytes)")
Oprt_Ps = oprt_parser(spltArgsU)
# eff2("Oprt_Ps(tStr)")
testList.append("Oprt_Ps(tStr)")
print("|".join([s.split("(")[0].center(11," ") for s in testList]))
print("|".join(["".center(11,"-") for s in testList]))
print("|".join([eff2(s,True).rjust(11," ") for s in testList]))
Sortie:
Test round = 5 timesI = 100000 sourceLng = 744 argFieldCount = 20
...
...
Str_P | Byte_P | Rebc_P | Rebc_Ps | Struct_P | Slice_P | SliceObj_P|SliceObj_Ps| Oprt_P | Oprt_Ps
-----------|-----------|-----------|-----------|-- ---------|-----------|-----------|-----------|---- -------|-----------
9.6315| 7.5952| 4.4187| 5.6867| 1.5123| 5.2915| 4.2673| 5.7121| 2.4713| 3.9051