Voici le code que j'utilise pour l'analyse sémantique de Twitter: -
import pandas as pd
import datetime
import numpy as np
import re
from nltk.tokenize import Word_tokenize
from nltk.corpus import stopwords
from nltk.stem.wordnet import WordNetLemmatizer
from nltk.stem.porter import PorterStemmer
df=pd.read_csv('twitDB.csv',header=None,
sep=',',error_bad_lines=False,encoding='utf-8')
hula=df[[0,1,2,3]]
hula=hula.fillna(0)
hula['Tweet'] = hula[0].astype(str)
+hula[1].astype(str)+hula[2].astype(str)+hula[3].astype(str)
hula["Tweet"]=hula.Tweet.str.lower()
ho=hula["Tweet"]
ho = ho.replace('\s+', ' ', regex=True)
ho=ho.replace('\.+', '.', regex=True)
special_char_list = [':', ';', '?', '}', ')', '{', '(']
for special_char in special_char_list:
ho=ho.replace(special_char, '')
print(ho)
ho = ho.replace('((www\.[\s]+)|(https?://[^\s]+))','URL',regex=True)
ho =ho.replace(r'#([^\s]+)', r'\1', regex=True)
ho =ho.replace('\'"',regex=True)
lem = WordNetLemmatizer()
stem = PorterStemmer()
fg=stem.stem(a)
eng_stopwords = stopwords.words('english')
ho = ho.to_frame(name=None)
a=ho.to_string(buf=None, columns=None, col_space=None, header=True,
index=True, na_rep='NaN', formatters=None, float_format=None,
sparsify=False, index_names=True, justify=None, line_width=None,
max_rows=None, max_cols=None, show_dimensions=False)
wordList = Word_tokenize(fg)
wordList = [Word for Word in wordList if Word not in eng_stopwords]
print (wordList)
Entrée, c'est-à-dire a: -
Tweet
0 1495596971.6034188::automotive auto ebc greens...
1 1495596972.330948::new free stock photo of cit...
obtenir la sortie (wordList) dans ce format: -
Tweet
0
1495596971.6034188
:
:automotive
auto
Je veux la sortie d'une ligne dans un format de ligne uniquement. Comment puis-je le faire? Si vous avez un meilleur code pour l'analyse sémantique de Twitter, partagez-le avec moi.
En bref:
df['Text'].apply(Word_tokenize)
Ou si vous souhaitez ajouter une autre colonne pour stocker la liste tokenized de chaînes:
df['tokenized_text'] = df['Text'].apply(Word_tokenize)
Il existe des tokenizers écrits spécifiquement pour le texte Twitter, voir http://www.nltk.org/api/nltk.tokenize.html#module-nltk.tokenize.casual
Utiliser nltk.tokenize.TweetTokenizer
:
from nltk.tokenize import TweetTokenizer
tt = TweetTokenizer()
df['Text'].apply(tt.tokenize)
Semblable à: