web-dev-qa-db-fra.com

Comment appliquer un masque en forme de disque à une matrice NumPy?

J'ai un tableau comme celui-ci:

>>> np.ones((8,8))
array([[ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.],
       [ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.],
       [ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.],
       [ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.],
       [ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.],
       [ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.],
       [ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.],
       [ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.]])

Je crée un masque en forme de disque avec un rayon 3 ainsi:

y,x = np.ogrid[-3: 3+1, -3: 3+1]
mask = x**2+y**2 <= 3**2

Cela donne:

>> mask
array([[False, False, False,  True, False, False, False],
       [False,  True,  True,  True,  True,  True, False],
       [False,  True,  True,  True,  True,  True, False],
       [ True,  True,  True,  True,  True,  True,  True],
       [False,  True,  True,  True,  True,  True, False],
       [False,  True,  True,  True,  True,  True, False],
       [False, False, False,  True, False, False, False]], dtype=bool)

Maintenant, je veux pouvoir appliquer ce masque à mon tableau, en utilisant n'importe quel élément comme point central. Ainsi, par exemple, avec le point central à (1,1), je veux obtenir un tableau comme:

>>> new_arr
array([[ True,  True,  True,  True,    1.,  1.,  1.,  1.],
       [ True,  True,  True,  True,  True,  1.,  1.,  1.],
       [ True,  True,  True,  True,    1.,  1.,  1.,  1.],
       [ True,  True,  True,  True,    1.,  1.,  1.,  1.],
       [ 1.,    True,    1.,    1.,    1.,  1.,  1.,  1.],
       [ 1.,      1.,    1.,    1.,    1.,  1.,  1.,  1.],
       [ 1.,      1.,    1.,    1.,    1.,  1.,  1.,  1.],
       [ 1.,      1.,    1.,    1.,    1.,  1.,  1.,  1.]])

Existe-t-il un moyen facile d'appliquer ce masque?

Edit: je ne devrais pas avoir mélangé des booléens et des flottants - c'était trompeur.

>>> new_arr
array([[ 255.,  255.,  255.,  255.,    1.,  1.,  1.,  1.],
       [ 255.,  255.,  255.,  255.,  255.,  1.,  1.,  1.],
       [ 255.,  255.,  255.,  255.,    1.,  1.,  1.,  1.],
       [ 255.,  255.,  255.,  255.,    1.,  1.,  1.,  1.],
       [ 1.,    255.,    1.,    1.,    1.,  1.,  1.,  1.],
       [ 1.,      1.,    1.,    1.,    1.,  1.,  1.,  1.],
       [ 1.,      1.,    1.,    1.,    1.,  1.,  1.,  1.],
       [ 1.,      1.,    1.,    1.,    1.,  1.,  1.,  1.]])

C'est plus le résultat dont j'ai besoin.

array[mask] = 255 

masquera le tableau en utilisant le point central (0 + rayon, 0 + rayon).

Cependant, j'aimerais pouvoir placer n'importe quel masque de taille à n'importe quel point (y, x) et le couper automatiquement pour l'adapter.

37
user816555

Je le ferais comme ça, où (a, b) est le centre de votre masque:

import numpy as np

a, b = 1, 1
n = 7
r = 3

y,x = np.ogrid[-a:n-a, -b:n-b]
mask = x*x + y*y <= r*r

array = np.ones((n, n))
array[mask] = 255
61
Bi Rico

Je voulais juste partager avec tout le monde une application un peu plus avancée de cette technique à laquelle je devais faire face.

Mon problème était d'appliquer ce noyau circulaire pour calculer la moyenne de toutes les valeurs entourant chaque point dans une matrice 2D. Le noyau généré peut être transmis au filtre générique de scipy de la manière suivante:

import numpy as np
from scipy.ndimage.filters import generic_filter as gf

kernel = np.zeros((2*radius+1, 2*radius+1))
y,x = np.ogrid[-radius:radius+1, -radius:radius+1]
mask = x**2 + y**2 <= radius**2
kernel[mask] = 1
circular_mean = gf(data, np.mean, footprint=kernel)

J'espère que cela t'aides!

6

Vous pouvez utiliser la fonction convolution de scipy, qui a l'avantage de vous permettre de placer n'importe quel masque particulier, alias noyau, sur n'importe quel nombre de coordonnées données dans votre tableau, tout à la fois:

import numpy as np
from scipy.ndimage.filters import convolve

Créez d'abord un tableau de coordonnées avec la coordonnée de l'endroit où vous voulez que le masque (noyau) soit centré marqué 2

background = np.ones((10,10))
background[5,5] = 2
print(background)

[[ 1.  1.  1.  1.  1.  1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.  1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.  1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.  1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.  1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.  2.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.  1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.  1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.  1.  1.  1.  1.  1.]
 [ 1.  1.  1.  1.  1.  1.  1.  1.  1.  1.]]

Créez votre masque:

y,x = np.ogrid[-3: 3+1, -3: 3+1]
mask = x**2+y**2 <= 3**2
mask = 254*mask.astype(float)
print(mask)

[[   0.    0.    0.  254.    0.    0.    0.]
 [   0.  254.  254.  254.  254.  254.    0.]
 [   0.  254.  254.  254.  254.  254.    0.]
 [ 254.  254.  254.  254.  254.  254.  254.]
 [   0.  254.  254.  254.  254.  254.    0.]
 [   0.  254.  254.  254.  254.  254.    0.]
 [   0.    0.    0.  254.    0.    0.    0.]]

Convoluez les deux images:

b = convolve(background, mask)-sum(sum(mask))+1
print(b)

[[   1.    1.    1.    1.    1.    1.    1.    1.    1.    1.]
 [   1.    1.    1.    1.    1.    1.    1.    1.    1.    1.]
 [   1.    1.    1.    1.    1.  255.    1.    1.    1.    1.]
 [   1.    1.    1.  255.  255.  255.  255.  255.    1.    1.]
 [   1.    1.    1.  255.  255.  255.  255.  255.    1.    1.]
 [   1.    1.  255.  255.  255.  255.  255.  255.  255.    1.]
 [   1.    1.    1.  255.  255.  255.  255.  255.    1.    1.]
 [   1.    1.    1.  255.  255.  255.  255.  255.    1.    1.]
 [   1.    1.    1.    1.    1.  255.    1.    1.    1.    1.]
 [   1.    1.    1.    1.    1.    1.    1.    1.    1.    1.]]

Notez que les entrées de la fonction convolve ne commutent pas, c'est-à-dire convolve (a, b)! = Convolve (b, a)

Notez également que si votre point est proche d'une arête, l'algo ne reproduit pas le noyau aux coordonnées. Pour contourner cela, vous pouvez remplir l'arrière-plan par le plus grand axe de votre noyau, appliquer la convolution, puis supprimer le remplissage.

Maintenant, vous pouvez mapper n'importe quel noyau à n'importe quel nombre de points dans un tableau, mais notez que si deux noyaux se chevauchent, ils s'ajoutent au chevauchement. Vous pouvez définir ce seuil si vous en avez besoin.

5
Michael Varney

Pour le mettre une fonction pratique:

def cmask(index,radius,array):
  a,b = index
  nx,ny = array.shape
  y,x = np.ogrid[-a:nx-a,-b:ny-b]
  mask = x*x + y*y <= radius*radius

  return(sum(array[mask]))

Renvoie la somme des pixels dans un rayon ou retourne (array [mask] = 2) pour tout besoin.

3
Horst

Avez-vous essayé de créer un masque ou des zéros et des uns, puis d'utiliser la multiplication de tableaux par élément? C'est plus ou moins la voie canonique.

Aussi, êtes-vous certain vous voulez un mélange de nombres et de booléens dans un tableau numpy? NumPy, comme son nom l'indique, fonctionne mieux avec les nombres.

2
9000

Pour obtenir le même résultat que dans votre exemple, vous pouvez faire quelque chose comme ceci:

>>> new_arr = np.array(ones, dtype=object)
>>> new_arr[mask[2:, 2:]] = True
>>> print new_arr
array([[True, True, True, True, 1.0, 1.0, 1.0, 1.0],
       [True, True, True, True, True, 1.0, 1.0, 1.0],
       [True, True, True, True, 1.0, 1.0, 1.0, 1.0],
       [True, True, True, True, 1.0, 1.0, 1.0, 1.0],
       [1.0, True, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
       [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
       [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
       [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]], dtype=object)
0
jcollado