J'ai des données comme celle-ci:
df = sqlContext.createDataFrame([
('1986/10/15', 'z', 'null'),
('1986/10/15', 'z', 'null'),
('1986/10/15', 'c', 'null'),
('1986/10/15', 'null', 'null'),
('1986/10/16', 'null', '4.0')],
('low', 'high', 'normal'))
Je souhaite calculer la différence de date entre les colonnes low
et 2017-05-02
et remplacer la colonne low
par la différence. J'ai essayé des solutions connexes sur stackoverflow mais aucune d'entre elles ne fonctionne.
Vous devez convertir la colonne low
en classe et vous pouvez ensuite utiliser datediff()
en combinaison avec lit()
. Utiliser Spark 2.2 :
from pyspark.sql.functions import datediff, to_date, lit
df.withColumn("test",
datediff(to_date(lit("2017-05-02")),
to_date("low","yyyy/MM/dd"))).show()
+----------+----+------+-----+
| low|high|normal| test|
+----------+----+------+-----+
|1986/10/15| z| null|11157|
|1986/10/15| z| null|11157|
|1986/10/15| c| null|11157|
|1986/10/15|null| null|11157|
|1986/10/16|null| 4.0|11156|
+----------+----+------+-----+
Avec <Spark 2.2 , nous devons d’abord convertir la colonne low
en classe timestamp
:
from pyspark.sql.functions import datediff, to_date, lit, unix_timestamp
df.withColumn("test",
datediff(to_date(lit("2017-05-02")),
to_date(unix_timestamp('low', "yyyy/MM/dd").cast("timestamp")))).show()
Sinon, comment trouver le nombre de jours écoulés entre les actions de deux utilisateurs ultérieurs à l'aide de pySpark:
import pyspark.sql.functions as funcs
from pyspark.sql.window import Window
window = Window.partitionBy('user_id').orderBy('action_date')
df = df.withColumn("days_passed", funcs.datediff(df.action_date,
lag(df.action_date, 1).over(window)))
+----------+-----------+-----------+
| user_id|action_date|days_passed|
+----------+-----------+-----------+
|623 |2015-10-21| null|
|623 |2015-11-19| 29|
|623 |2016-01-13| 59|
|623 |2016-01-21| 8|
|623 |2016-03-24| 63|
+----------+----------+------------+