J'ai une image en niveaux de gris 16 bits et je veux la convertir en une image en niveaux de gris 8 bits dans OpenCV pour python pour l'utiliser avec diverses fonctions (comme findContours, etc.). Est-il possible de le faire dans python ou je dois passer en C++?
Vous pouvez utiliser des méthodes de conversion numpy car un tapis OpenCV est un tableau numpy.
Cela marche:
img8 = (img16/256).astype('uint8')
Code de scipy (désormais obsolète):
def bytescaling(data, cmin=None, cmax=None, high=255, low=0):
"""
Converting the input image to uint8 dtype and scaling
the range to ``(low, high)`` (default 0-255). If the input image already has
dtype uint8, no scaling is done.
:param data: 16-bit image data array
:param cmin: bias scaling of small values (def: data.min())
:param cmax: bias scaling of large values (def: data.max())
:param high: scale max value to high. (def: 255)
:param low: scale min value to low. (def: 0)
:return: 8-bit image data array
"""
if data.dtype == np.uint8:
return data
if high > 255:
high = 255
if low < 0:
low = 0
if high < low:
raise ValueError("`high` should be greater than or equal to `low`.")
if cmin is None:
cmin = data.min()
if cmax is None:
cmax = data.max()
cscale = cmax - cmin
if cscale == 0:
cscale = 1
scale = float(high - low) / cscale
bytedata = (data - cmin) * scale + low
return (bytedata.clip(low, high) + 0.5).astype(np.uint8)
Il est vraiment facile de convertir en 8 bits en utilisant scipy.misc.bytescale. La matrice OpenCV est un tableau numpy, donc l'octet fera exactement ce que vous voulez.
from scipy.misc import bytescale
img8 = bytescale(img16)
Vous pouvez le faire dans Python en utilisant NumPy en mappant l'image via une table de recherche.
import numpy as np
def map_uint16_to_uint8(img, lower_bound=None, upper_bound=None):
'''
Map a 16-bit image trough a lookup table to convert it to 8-bit.
Parameters
----------
img: numpy.ndarray[np.uint16]
image that should be mapped
lower_bound: int, optional
lower bound of the range that should be mapped to ``[0, 255]``,
value must be in the range ``[0, 65535]`` and smaller than `upper_bound`
(defaults to ``numpy.min(img)``)
upper_bound: int, optional
upper bound of the range that should be mapped to ``[0, 255]``,
value must be in the range ``[0, 65535]`` and larger than `lower_bound`
(defaults to ``numpy.max(img)``)
Returns
-------
numpy.ndarray[uint8]
'''
if not(0 <= lower_bound < 2**16) and lower_bound is not None:
raise ValueError(
'"lower_bound" must be in the range [0, 65535]')
if not(0 <= upper_bound < 2**16) and upper_bound is not None:
raise ValueError(
'"upper_bound" must be in the range [0, 65535]')
if lower_bound is None:
lower_bound = np.min(img)
if upper_bound is None:
upper_bound = np.max(img)
if lower_bound >= upper_bound:
raise ValueError(
'"lower_bound" must be smaller than "upper_bound"')
lut = np.concatenate([
np.zeros(lower_bound, dtype=np.uint16),
np.linspace(0, 255, upper_bound - lower_bound).astype(np.uint16),
np.ones(2**16 - upper_bound, dtype=np.uint16) * 255
])
return lut[img].astype(np.uint8)
# Let's generate an example image (normally you would load the 16-bit image: cv2.imread(filename, cv2.IMREAD_UNCHANGED))
img = (np.random.random((100, 100)) * 2**16).astype(np.uint16)
# Convert it to 8-bit
map_uint16_to_uint8(img)