Cela me dérange depuis des lustres maintenant:
Étant donné un simple pandas DataFrame
>>> df
Timestamp Col1
2008-08-01 0.001373
2008-09-01 0.040192
2008-10-01 0.027794
2008-11-01 0.012590
2008-12-01 0.026394
2009-01-01 0.008564
2009-02-01 0.007714
2009-03-01 -0.019727
2009-04-01 0.008888
2009-05-01 0.039801
2009-06-01 0.010042
2009-07-01 0.020971
2009-08-01 0.011926
2009-09-01 0.024998
2009-10-01 0.005213
2009-11-01 0.016804
2009-12-01 0.020724
2010-01-01 0.006322
2010-02-01 0.008971
2010-03-01 0.003911
2010-04-01 0.013928
2010-05-01 0.004640
2010-06-01 0.000744
2010-07-01 0.004697
2010-08-01 0.002553
2010-09-01 0.002770
2010-10-01 0.002834
2010-11-01 0.002157
2010-12-01 0.001034
Comment le séparer pour qu'un nouveau DataFrame soit égal aux entrées en df pour les dates entre 2009-05-01
et 2010-03-01
>>> df2
Timestamp Col1
2009-05-01 0.039801
2009-06-01 0.010042
2009-07-01 0.020971
2009-08-01 0.011926
2009-09-01 0.024998
2009-10-01 0.005213
2009-11-01 0.016804
2009-12-01 0.020724
2010-01-01 0.006322
2010-02-01 0.008971
2010-03-01 0.003911
Si vous avez défini la colonne "Horodatage" comme index, vous pouvez simplement utiliser
df['2009-05-01' :'2010-03-01']
IIUC, un simple tranchage?
from datetime import datetime
df2 = df[(df.Timestamp >= datetime(2009, 05, 01)) &
(df.Timestamp <= datetime(2010, 03, 01))]
Vous pouvez faire quelque chose comme:
df2 = df.set_index('Timestamp')['2009-05-01' :'2010-03-01'] print(df2)