J'ai un (exemple-) dataframe avec 4 colonnes:
data = {'A': ['a', 'b', 'c', 'd', 'e', 'f'],
'B': [42, 52, np.nan, np.nan, np.nan, np.nan],
'C': [np.nan, np.nan, 31, 2, np.nan, np.nan],
'D': [np.nan, np.nan, np.nan, np.nan, 62, 70]}
df = pd.DataFrame(data, columns = ['A', 'B', 'C', 'D'])
A B C D
0 a 42.0 NaN NaN
1 b 52.0 NaN NaN
2 c NaN 31.0 NaN
3 d NaN 2.0 NaN
4 e NaN NaN 62.0
5 f NaN NaN 70.0
Je voudrais maintenant fusionner/combiner les colonnes B, C et D dans une nouvelle colonne E comme dans cet exemple:
data2 = {'A': ['a', 'b', 'c', 'd', 'e', 'f'],
'E': [42, 52, 31, 2, 62, 70]}
df2 = pd.DataFrame(data2, columns = ['A', 'E'])
A E
0 a 42
1 b 52
2 c 31
3 d 2
4 e 62
5 f 70
J'ai trouvé une question assez similaire ici mais cela ajoute les colonnes fusionnées B, C et D à la fin de la colonne A:
0 a
1 b
2 c
3 d
4 e
5 f
6 42
7 52
8 31
9 2
10 62
11 70
dtype: object
Merci pour l'aide.
Option 1
Utilisation de assign
et drop
In [644]: cols = ['B', 'C', 'D']
In [645]: df.assign(E=df[cols].sum(1)).drop(cols, 1)
Out[645]:
A E
0 a 42.0
1 b 52.0
2 c 31.0
3 d 2.0
4 e 62.0
5 f 70.0
Option 2
Utilisation de l'affectation et drop
In [648]: df['E'] = df[cols].sum(1)
In [649]: df = df.drop(cols, 1)
In [650]: df
Out[650]:
A E
0 a 42.0
1 b 52.0
2 c 31.0
3 d 2.0
4 e 62.0
5 f 70.0
Option Dernièrement, j'aime la 3ème option.
Utilisation de groupby
In [660]: df.groupby(np.where(df.columns == 'A', 'A', 'E'), axis=1).first() #or sum max min
Out[660]:
A E
0 a 42.0
1 b 52.0
2 c 31.0
3 d 2.0
4 e 62.0
5 f 70.0
In [661]: df.columns == 'A'
Out[661]: array([ True, False, False, False], dtype=bool)
In [662]: np.where(df.columns == 'A', 'A', 'E')
Out[662]:
array(['A', 'E', 'E', 'E'],
dtype='|S1')
La question telle qu'elle est écrite demande de fusionner/combiner par opposition à somme, donc la publier pour aider les gens qui trouvent cette réponse à la recherche d'aide sur la fusion avec combine_first, ce qui peut être un peu délicat.
df2 = pd.concat([df["A"],
df["B"].combine_first(df["C"]).combine_first(df["D"])],
axis=1)
df2.rename(columns={"B":"E"}, inplace=True)
A E
0 a 42.0
1 b 52.0
2 c 31.0
3 d 2.0
4 e 62.0
5 f 70.0
Qu'est-ce qui est si délicat à ce sujet? dans ce cas, il n'y a pas de problème - mais supposons que vous tiriez les valeurs B, C et D de différents cadres de données, dans lesquels les étiquettes a, b, c, d, e, f étaient présentes, mais pas nécessairement dans le même ordre. combine_first () s'aligne sur l'index, vous devez donc clouer un set_index () sur chacune de vos références df.
df2 = pd.concat([df.set_index("A", drop=False)["A"],
df.set_index("A")["B"]\
.combine_first(df.set_index("A")["C"])\
.combine_first(df.set_index("A")["D"]).astype(int)],
axis=1).reset_index(drop=True)
df2.rename(columns={"B":"E"}, inplace=True)
A E
0 a 42
1 b 52
2 c 31
3 d 2
4 e 62
5 f 70
Utilisez difference
pour les noms de colonnes sans A
, puis obtenez sum
ou max
:
cols = df.columns.difference(['A'])
df['E'] = df[cols].sum(axis=1).astype(int)
# df['E'] = df[cols].max(axis=1).astype(int)
df = df.drop(cols, axis=1)
print (df)
A E
0 a 42
1 b 52
2 c 31
3 d 2
4 e 62
5 f 70
Si plusieurs valeurs par ligne:
data = {'A': ['a', 'b', 'c', 'd', 'e', 'f'],
'B': [42, 52, np.nan, np.nan, np.nan, np.nan],
'C': [np.nan, np.nan, 31, 2, np.nan, np.nan],
'D': [10, np.nan, np.nan, np.nan, 62, 70]}
df = pd.DataFrame(data, columns = ['A', 'B', 'C', 'D'])
print (df)
A B C D
0 a 42.0 NaN 10.0
1 b 52.0 NaN NaN
2 c NaN 31.0 NaN
3 d NaN 2.0 NaN
4 e NaN NaN 62.0
5 f NaN NaN 70.0
cols = df.columns.difference(['A'])
df['E'] = df[cols].apply(lambda x: ', '.join(x.dropna().astype(int).astype(str)), 1)
df = df.drop(cols, axis=1)
print (df)
A E
0 a 42, 10
1 b 52
2 c 31
3 d 2
4 e 62
5 f 70
Vous pouvez également utiliser ffill
avec iloc
:
df['E'] = df.iloc[:, 1:].ffill(1).iloc[:, -1].astype(int)
df = df.iloc[:, [0, -1]]
print(df)
A E
0 a 42
1 b 52
2 c 31
3 d 2
4 e 62
5 f 70