J'essaie de comprendre comment torchvision interagit avec mathplotlib pour produire une grille d'images. Il est facile de générer des images et de les afficher de manière itérative:
import torch
import torchvision
import matplotlib.pyplot as plt
w = torch.randn(10,3,640,640)
for i in range (0,10):
z = w[i]
plt.imshow(z.permute(1,2,0))
plt.show()
Cependant, l'affichage de ces images dans une grille ne semble pas être aussi simple.
w = torch.randn(10,3,640,640)
grid = torchvision.utils.make_grid(w, nrow=5)
plt.imshow(grid)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-61-1601915e10f3> in <module>()
1 w = torch.randn(10,3,640,640)
2 grid = torchvision.utils.make_grid(w, nrow=5)
----> 3 plt.imshow(grid)
/anaconda3/lib/python3.6/site-packages/matplotlib/pyplot.py in imshow(X, cmap, norm, aspect, interpolation, alpha, vmin, vmax, Origin, extent, shape, filternorm, filterrad, imlim, resample, url, hold, data, **kwargs)
3203 filternorm=filternorm, filterrad=filterrad,
3204 imlim=imlim, resample=resample, url=url, data=data,
-> 3205 **kwargs)
3206 finally:
3207 ax._hold = washold
/anaconda3/lib/python3.6/site-packages/matplotlib/__init__.py in inner(ax, *args, **kwargs)
1853 "the Matplotlib list!)" % (label_namer, func.__name__),
1854 RuntimeWarning, stacklevel=2)
-> 1855 return func(ax, *args, **kwargs)
1856
1857 inner.__doc__ = _add_data_doc(inner.__doc__,
/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_axes.py in imshow(self, X, cmap, norm, aspect, interpolation, alpha, vmin, vmax, Origin, extent, shape, filternorm, filterrad, imlim, resample, url, **kwargs)
5485 resample=resample, **kwargs)
5486
-> 5487 im.set_data(X)
5488 im.set_alpha(alpha)
5489 if im.get_clip_path() is None:
/anaconda3/lib/python3.6/site-packages/matplotlib/image.py in set_data(self, A)
651 if not (self._A.ndim == 2
652 or self._A.ndim == 3 and self._A.shape[-1] in [3, 4]):
--> 653 raise TypeError("Invalid dimensions for image data")
654
655 if self._A.ndim == 3:
TypeError: Invalid dimensions for image data
Même si la documentation de PyTorch indique que w est la forme correcte, Python dit que ce n'est pas le cas. J'ai donc essayé de permuter les indices de mon tenseur:
w = torch.randn(10,3,640,640)
grid = torchvision.utils.make_grid(w.permute(0,2,3,1), nrow=5)
plt.imshow(grid)
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-62-6f2dc6313e29> in <module>()
1 w = torch.randn(10,3,640,640)
----> 2 grid = torchvision.utils.make_grid(w.permute(0,2,3,1), nrow=5)
3 plt.imshow(grid)
/anaconda3/lib/python3.6/site-packages/torchvision-0.2.1-py3.6.Egg/torchvision/utils.py in make_grid(tensor, nrow, padding, normalize, range, scale_each, pad_value)
83 grid.narrow(1, y * height + padding, height - padding)\
84 .narrow(2, x * width + padding, width - padding)\
---> 85 .copy_(tensor[k])
86 k = k + 1
87 return grid
RuntimeError: The expanded size of the tensor (3) must match the existing size (640) at non-singleton dimension 0
Qu'est-ce qu'il se passe ici? Comment puis-je placer un tas d'images générées aléatoirement dans une grille et les afficher?
Il y a une petite erreur dans votre code. Par exemple, le code ci-dessous fonctionne correctement:
In [107]: import torchvision
# sample input
In [108]: batch_tensor = torch.randn(*(10, 3, 256, 256))
# make grid (2 rows and 5 columns)
In [109]: grid_img = torchvision.utils.make_grid(batch_tensor, nrow=5)
# check shape
In [110]: grid_img.shape
Out[110]: torch.Size([3, 518, 1292])
# reshape and plot
In [111]: plt.imshow(grid_img.permute(1, 2, 0))
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Out[111]: <matplotlib.image.AxesImage at 0x7f62081ef080>
qui montre la sortie comme:
Vous devez d'abord convertir en numpy
import numpy as np
def show(img):
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1,2,0)), interpolation='nearest')
w = torch.randn(10,3,640,640)
grid = torchvision.utils.make_grid(w, nrow=10, padding=100)
show(grid)