C’est ce que j’ai eu jusqu’à présent, mais cela ne fonctionne pas:
class Node:
rChild,lChild,data = None,None,None
def __init__(self,key):
self.rChild = None
self.lChild = None
self.data = key
class Tree:
root,size = None,0
def __init__(self):
self.root = None
self.size = 0
def insert(self,node,someNumber):
if node is None:
node = Node(someNumber)
else:
if node.data > someNumber:
self.insert(node.rchild,someNumber)
else:
self.insert(node.rchild, someNumber)
return
def main():
t = Tree()
t.root = Node(4)
t.root.rchild = Node(5)
print t.root.data #this works
print t.root.rchild.data #this works too
t = Tree()
t.insert(t.root,4)
t.insert(t.root,5)
print t.root.data #this fails
print t.root.rchild.data #this fails too
if __== '__main__':
main()
Voici un exemple rapide d'insertion binaire:
class Node:
def __init__(self, val):
self.l_child = None
self.r_child = None
self.data = val
def binary_insert(root, node):
if root is None:
root = node
else:
if root.data > node.data:
if root.l_child is None:
root.l_child = node
else:
binary_insert(root.l_child, node)
else:
if root.r_child is None:
root.r_child = node
else:
binary_insert(root.r_child, node)
def in_order_print(root):
if not root:
return
in_order_print(root.l_child)
print root.data
in_order_print(root.r_child)
def pre_order_print(root):
if not root:
return
print root.data
pre_order_print(root.l_child)
pre_order_print(root.r_child)
r = Node(3)
binary_insert(r, Node(7))
binary_insert(r, Node(1))
binary_insert(r, Node(5))
3
/ \
1 7
/
5
print "in order:"
in_order_print(r)
print "pre order"
pre_order_print(r)
in order:
1
3
5
7
pre order
3
1
7
5
class Node:
rChild,lChild,data = None,None,None
C'est faux - cela rend vos variables class variables - c'est-à-dire que chaque instance de Node utilise les mêmes valeurs (la modification de rChild de n'importe quel nœud le modifie pour tous les nœuds!). Ce n'est clairement pas ce que vous voulez; essayer
class Node:
def __init__(self, key):
self.rChild = None
self.lChild = None
self.data = key
maintenant, chaque nœud a son propre ensemble de variables. La même chose s'applique à votre définition de l'arbre,
class Tree:
root,size = None,0 # <- lose this line!
def __init__(self):
self.root = None
self.size = 0
De plus, chaque classe devrait être une classe "nouveau style" dérivée de la classe "objet" et devrait être chaînée vers l'objet .__ init __ ():
class Node(object):
def __init__(self, data, rChild=None, lChild=None):
super(Node,self).__init__()
self.data = data
self.rChild = rChild
self.lChild = lChild
class Tree(object):
def __init__(self):
super(Tree,self).__init__()
self.root = None
self.size = 0
En outre, main () est indenté trop loin - comme indiqué, il s’agit d’une méthode de Tree qui est impossible à appeler car elle n’accepte pas un argument self .
De plus, vous modifiez directement les données de l’objet (t.root = Node(4)
), ce qui détruit l’encapsulation (l’intérêt d’avoir des classes en premier lieu); vous devriez faire quelque chose de plus semblable à
def main():
t = Tree()
t.add(4) # <- let the tree create a data Node and insert it
t.add(5)
class BST:
def __init__(self, val=None):
self.left = None
self.right = None
self.val = val
def __str__(self):
return "[%s, %s, %s]" % (self.left, str(self.val), self.right)
def isEmpty(self):
return self.left == self.right == self.val == None
def insert(self, val):
if self.isEmpty():
self.val = val
Elif val < self.val:
if self.left is None:
self.left = BST(val)
else:
self.left.insert(val)
else:
if self.right is None:
self.right = BST(val)
else:
self.right.insert(val)
a = BST(1)
a.insert(2)
a.insert(3)
a.insert(0)
print a
class Node:
rChild,lChild,parent,data = None,None,None,0
def __init__(self,key):
self.rChild = None
self.lChild = None
self.parent = None
self.data = key
class Tree:
root,size = None,0
def __init__(self):
self.root = None
self.size = 0
def insert(self,someNumber):
self.size = self.size+1
if self.root is None:
self.root = Node(someNumber)
else:
self.insertWithNode(self.root, someNumber)
def insertWithNode(self,node,someNumber):
if node.lChild is None and node.rChild is None:#external node
if someNumber > node.data:
newNode = Node(someNumber)
node.rChild = newNode
newNode.parent = node
else:
newNode = Node(someNumber)
node.lChild = newNode
newNode.parent = node
else: #not external
if someNumber > node.data:
if node.rChild is not None:
self.insertWithNode(node.rChild, someNumber)
else: #if empty node
newNode = Node(someNumber)
node.rChild = newNode
newNode.parent = node
else:
if node.lChild is not None:
self.insertWithNode(node.lChild, someNumber)
else:
newNode = Node(someNumber)
node.lChild = newNode
newNode.parent = node
def printTree(self,someNode):
if someNode is None:
pass
else:
self.printTree(someNode.lChild)
print someNode.data
self.printTree(someNode.rChild)
def main():
t = Tree()
t.insert(5)
t.insert(3)
t.insert(7)
t.insert(4)
t.insert(2)
t.insert(1)
t.insert(6)
t.printTree(t.root)
if __== '__main__':
main()
Ma solution.
La méthode Tree.insert
de l'Op se qualifie pour le prix "Mauvais abus de langage de la semaine" - elle n'insère rien. Il crée un nœud qui n'est attaché à aucun autre nœud (pas qu'il y ait des nœuds auxquels l'attacher), puis le nœud créé est supprimé lorsque la méthode est retournée.
Pour l'édification de Hugh Bothwell:
>>> class Foo(object):
... bar = None
...
>>> a = Foo()
>>> b = Foo()
>>> a.bar
>>> a.bar = 42
>>> b.bar
>>> b.bar = 666
>>> a.bar
42
>>> b.bar
666
>>>
Je trouve les solutions un peu maladroites dans la partie insert
. Vous pouvez retourner la référence root
et la simplifier un peu:
def binary_insert(root, node):
if root is None:
return node
if root.data > node.data:
root.l_child = binary_insert(root.l_child, node)
else:
root.r_child = binary_insert(root.r_child, node)
return root
Juste quelque chose pour vous aider à commencer.
Une (simple idée de) recherche d'arborescence binaire serait très probablement implémentée en python selon les lignes:
def search(node, key):
if node is None: return None # key not found
if key< node.key: return search(node.left, key)
Elif key> node.key: return search(node.right, key)
else: return node.value # found key
Il ne vous reste plus qu'à implémenter l'échafaudage (création d'arborescence et insertion de valeurs) et vous avez terminé.
Un autre BST Python avec clé de tri (valeur par défaut)
LEFT = 0
RIGHT = 1
VALUE = 2
SORT_KEY = -1
class BinarySearchTree(object):
def __init__(self, sort_key=None):
self._root = []
self._sort_key = sort_key
self._len = 0
def insert(self, val):
if self._sort_key is None:
sort_key = val // if no sort key, sort key is value
else:
sort_key = self._sort_key(val)
node = self._root
while node:
if sort_key < node[_SORT_KEY]:
node = node[LEFT]
else:
node = node[RIGHT]
if sort_key is val:
node[:] = [[], [], val]
else:
node[:] = [[], [], val, sort_key]
self._len += 1
def minimum(self):
return self._extreme_node(LEFT)[VALUE]
def maximum(self):
return self._extreme_node(RIGHT)[VALUE]
def find(self, sort_key):
return self._find(sort_key)[VALUE]
def _extreme_node(self, side):
if not self._root:
raise IndexError('Empty')
node = self._root
while node[side]:
node = node[side]
return node
def _find(self, sort_key):
node = self._root
while node:
node_key = node[SORT_KEY]
if sort_key < node_key:
node = node[LEFT]
Elif sort_key > node_key:
node = node[RIGHT]
else:
return node
raise KeyError("%r not found" % sort_key)
il est facile d'implémenter un BST en utilisant deux classes, 1. Node et 2. Tree. La classe Tree sera juste pour l'interface utilisateur et les méthodes réelles seront implémentées dans la classe Node.
class Node():
def __init__(self,val):
self.value = val
self.left = None
self.right = None
def _insert(self,data):
if data == self.value:
return False
Elif data < self.value:
if self.left:
return self.left._insert(data)
else:
self.left = Node(data)
return True
else:
if self.right:
return self.right._insert(data)
else:
self.right = Node(data)
return True
def _inorder(self):
if self:
if self.left:
self.left._inorder()
print(self.value)
if self.right:
self.right._inorder()
class Tree():
def __init__(self):
self.root = None
def insert(self,data):
if self.root:
return self.root._insert(data)
else:
self.root = Node(data)
return True
def inorder(self):
if self.root is not None:
return self.root._inorder()
else:
return False
if __name__=="__main__":
a = Tree()
a.insert(16)
a.insert(8)
a.insert(24)
a.insert(6)
a.insert(12)
a.insert(19)
a.insert(29)
a.inorder()
Fonction inorder pour vérifier si BST est correctement implémenté.
Voici une implémentation récursive compacte orientée objet:
class BTreeNode(object):
def __init__(self, data):
self.data = data
self.rChild = None
self.lChild = None
def __str__(self):
return (self.lChild.__str__() + '<-' if self.lChild != None else '') + self.data.__str__() + ('->' + self.rChild.__str__() if self.rChild != None else '')
def insert(self, btreeNode):
if self.data > btreeNode.data: #insert left
if self.lChild == None:
self.lChild = btreeNode
else:
self.lChild.insert(btreeNode)
else: #insert right
if self.rChild == None:
self.rChild = btreeNode
else:
self.rChild.insert(btreeNode)
def main():
btreeRoot = BTreeNode(5)
print 'inserted %s:' %5, btreeRoot
btreeRoot.insert(BTreeNode(7))
print 'inserted %s:' %7, btreeRoot
btreeRoot.insert(BTreeNode(3))
print 'inserted %s:' %3, btreeRoot
btreeRoot.insert(BTreeNode(1))
print 'inserted %s:' %1, btreeRoot
btreeRoot.insert(BTreeNode(2))
print 'inserted %s:' %2, btreeRoot
btreeRoot.insert(BTreeNode(4))
print 'inserted %s:' %4, btreeRoot
btreeRoot.insert(BTreeNode(6))
print 'inserted %s:' %6, btreeRoot
Le résultat de la main ci-dessus est:
inserted 5: 5
inserted 7: 5->7
inserted 3: 3<-5->7
inserted 1: 1<-3<-5->7
inserted 2: 1->2<-3<-5->7
inserted 4: 1->2<-3->4<-5->7
inserted 6: 1->2<-3->4<-5->6<-7
La réponse acceptée néglige de définir un attribut parent pour chaque nœud inséré, sans lequel on ne peut pas implémenter une méthode successor
qui recherche le successeur dans un parcours dans l’arborescence dans l’ordre en O (h), où h est la hauteur de l'arbre (par opposition au temps O (n) nécessaire à la marche).
Voici une implémentation basée sur le pseudocode donné dans Cormen et al., Introduction aux algorithmes, incluant l’attribution d’un attribut parent
et d’une méthode successor
:
class Node(object):
def __init__(self, key):
self.key = key
self.left = None
self.right = None
self.parent = None
class Tree(object):
def __init__(self, root=None):
self.root = root
def insert(self, z):
y = None
x = self.root
while x is not None:
y = x
if z.key < x.key:
x = x.left
else:
x = x.right
z.parent = y
if y is None:
self.root = z # Tree was empty
Elif z.key < y.key:
y.left = z
else:
y.right = z
@staticmethod
def minimum(x):
while x.left is not None:
x = x.left
return x
@staticmethod
def successor(x):
if x.right is not None:
return Tree.minimum(x.right)
y = x.parent
while y is not None and x == y.right:
x = y
y = y.parent
return y
Voici quelques tests pour montrer que l’arbre se comporte comme prévu pour l’exemple donné par DTing :
import pytest
@pytest.fixture
def tree():
t = Tree()
t.insert(Node(3))
t.insert(Node(1))
t.insert(Node(7))
t.insert(Node(5))
return t
def test_tree_insert(tree):
assert tree.root.key == 3
assert tree.root.left.key == 1
assert tree.root.right.key == 7
assert tree.root.right.left.key == 5
def test_tree_successor(tree):
assert Tree.successor(tree.root.left).key == 3
assert Tree.successor(tree.root.right.left).key == 7
if __== "__main__":
pytest.main([__file__])
Voici une solution de travail.
class BST:
def __init__(self,data):
self.root = data
self.left = None
self.right = None
def insert(self,data):
if self.root == None:
self.root = BST(data)
Elif data > self.root:
if self.right == None:
self.right = BST(data)
else:
self.right.insert(data)
Elif data < self.root:
if self.left == None:
self.left = BST(data)
else:
self.left.insert(data)
def inordertraversal(self):
if self.left != None:
self.left.inordertraversal()
print (self.root),
if self.right != None:
self.right.inordertraversal()
t = BST(4)
t.insert(1)
t.insert(7)
t.insert(3)
t.insert(6)
t.insert(2)
t.insert(5)
t.inordertraversal()
Le problème, ou au moins un problème avec votre code, est ici: -
def insert(self,node,someNumber):
if node is None:
node = Node(someNumber)
else:
if node.data > someNumber:
self.insert(node.rchild,someNumber)
else:
self.insert(node.rchild, someNumber)
return
L'instruction "if node.data> someNumber:" et l'instruction associée "else:" ont le même code après eux. c'est-à-dire que vous faites la même chose si la déclaration if est vraie ou fausse.
Je suggérerais que vous ayez probablement l'intention de faire différentes choses ici, peut-être que l'une d'entre elles devrait dire self.insert (node.lchild, someNumber)?
Le code suivant est fondamental pour la réponse de @DTing et ce que j’apprends de la classe, qui utilise une boucle while pour être insérée (indiqué dans le code).
class Node:
def __init__(self, val):
self.l_child = None
self.r_child = None
self.data = val
def binary_insert(root, node):
y = None
x = root
z = node
#while loop here
while x is not None:
y = x
if z.data < x.data:
x = x.l_child
else:
x = x.r_child
z.parent = y
if y == None:
root = z
Elif z.data < y.data:
y.l_child = z
else:
y.r_child = z
def in_order_print(root):
if not root:
return
in_order_print(root.l_child)
print(root.data)
in_order_print(root.r_child)
r = Node(3)
binary_insert(r, Node(7))
binary_insert(r, Node(1))
binary_insert(r, Node(5))
in_order_print(r)