Étant donné deux cadres de données df_1
et df_2
, comment les joindre de telle sorte que la colonne datetime df_1
se situe entre start
et end
dans la trame de données df_2
:
print df_1
timestamp A B
0 2016-05-14 10:54:33 0.020228 0.026572
1 2016-05-14 10:54:34 0.057780 0.175499
2 2016-05-14 10:54:35 0.098808 0.620986
3 2016-05-14 10:54:36 0.158789 1.014819
4 2016-05-14 10:54:39 0.038129 2.384590
print df_2
start end event
0 2016-05-14 10:54:31 2016-05-14 10:54:33 E1
1 2016-05-14 10:54:34 2016-05-14 10:54:37 E2
2 2016-05-14 10:54:38 2016-05-14 10:54:42 E3
Récupère le event
où df1.timestamp
est entre df_2.start
et df2.end
timestamp A B event
0 2016-05-14 10:54:33 0.020228 0.026572 E1
1 2016-05-14 10:54:34 0.057780 0.175499 E2
2 2016-05-14 10:54:35 0.098808 0.620986 E2
3 2016-05-14 10:54:36 0.158789 1.014819 E2
4 2016-05-14 10:54:39 0.038129 2.384590 E3
Une solution simple est de créer interval index
de start and end
réglage closed = both
puis utilisez get_loc
pour obtenir l'événement c.-à-d. (j'espère que toutes les dates sont en horodatage dtype)
df_2.index = pd.IntervalIndex.from_arrays(df_2['start'],df_2['end'],closed='both')
df_1['event'] = df_1['timestamp'].apply(lambda x : df_2.iloc[df_2.index.get_loc(x)]['event'])
Production :
horodatage événement AB 0 2016-05-14 10:54:33 0.020228 0.026572 E1 1 2016-05-14 10:54:34 0.057780 0.175499 E2 2 2016-05-14 10:54:35 0,098808 0,620986 E2 3 2016-05-14 10:54:36 0,158789 1,014819 E2 4 2016-05-14 10:54:39 0,038129 2,384590 E3
idx = pd.IntervalIndex.from_arrays(df_2['start'], df_2['end'], closed='both')
event = df_2.loc[idx.get_indexer(df_1.timestamp), 'event']
event
0 E1
1 E2
1 E2
1 E2
2 E3
Name: event, dtype: object
df_1['event'] = event.values
df_1
timestamp A B event
0 2016-05-14 10:54:33 0.020228 0.026572 E1
1 2016-05-14 10:54:34 0.057780 0.175499 E2
2 2016-05-14 10:54:35 0.098808 0.620986 E2
3 2016-05-14 10:54:36 0.158789 1.014819 E2
4 2016-05-14 10:54:39 0.038129 2.384590 E3
Référence: ne question sur IntervalIndex.get_indexer.
Vous pouvez utiliser le module pandasql
import pandasql as ps
sqlcode = '''
select df_1.timestamp
,df_1.A
,df_1.B
,df_2.event
from df_1
inner join df_2
on d1.timestamp between df_2.start and df2.end
'''
newdf = ps.sqldf(sqlcode,locals())
Option 1
idx = pd.IntervalIndex.from_arrays(df_2['start'], df_2['end'], closed='both')
df_2.index=idx
df_1['event']=df_2.loc[df_1.timestamp,'event'].values
Option 2
df_2['timestamp']=df_2['end']
pd.merge_asof(df_1,df_2[['timestamp','event']],on='timestamp',direction ='forward',allow_exact_matches =True)
Out[405]:
timestamp A B event
0 2016-05-14 10:54:33 0.020228 0.026572 E1
1 2016-05-14 10:54:34 0.057780 0.175499 E2
2 2016-05-14 10:54:35 0.098808 0.620986 E2
3 2016-05-14 10:54:36 0.158789 1.014819 E2
4 2016-05-14 10:54:39 0.038129 2.384590 E3
Dans cette méthode, nous supposons que des objets TimeStamp sont utilisés.
df2 start end event
0 2016-05-14 10:54:31 2016-05-14 10:54:33 E1
1 2016-05-14 10:54:34 2016-05-14 10:54:37 E2
2 2016-05-14 10:54:38 2016-05-14 10:54:42 E3
event_num = len(df2.event)
def get_event(t):
event_idx = ((t >= df2.start) & (t <= df2.end)).dot(np.arange(event_num))
return df2.event[event_idx]
df1["event"] = df1.timestamp.transform(get_event)
Explication de get_event
Pour chaque horodatage dans df1
, Dites t0 = 2016-05-14 10:54:33
,
(t0 >= df2.start) & (t0 <= df2.end)
Contiendra 1 vrai. (Voir l'exemple 1). Ensuite, prenez un produit scalaire avec np.arange(event_num)
pour obtenir l'index de l'événement auquel appartient t0
.
Exemples:
Exemple 1
t0 >= df2.start t0 <= df2.end After & np.arange(3)
0 True True -> T 0 event_idx
1 False True -> F 1 -> 0
2 False True -> F 2
Prenez t2 = 2016-05-14 10:54:35
Pour un autre exemple
t2 >= df2.start t2 <= df2.end After & np.arange(3)
0 True False -> F 0 event_idx
1 True True -> T 1 -> 1
2 False True -> F 2
Nous utilisons enfin transform
pour transformer chaque horodatage en événement.