web-dev-qa-db-fra.com

Comment joindre deux trames de données pour lesquelles les valeurs de colonne sont dans une certaine plage?

Étant donné deux cadres de données df_1 et df_2, comment les joindre de telle sorte que la colonne datetime df_1 se situe entre start et end dans la trame de données df_2:

print df_1

  timestamp              A          B
0 2016-05-14 10:54:33    0.020228   0.026572
1 2016-05-14 10:54:34    0.057780   0.175499
2 2016-05-14 10:54:35    0.098808   0.620986
3 2016-05-14 10:54:36    0.158789   1.014819
4 2016-05-14 10:54:39    0.038129   2.384590


print df_2

  start                end                  event    
0 2016-05-14 10:54:31  2016-05-14 10:54:33  E1
1 2016-05-14 10:54:34  2016-05-14 10:54:37  E2
2 2016-05-14 10:54:38  2016-05-14 10:54:42  E3

Récupère le eventdf1.timestamp est entre df_2.start et df2.end

  timestamp              A          B          event
0 2016-05-14 10:54:33    0.020228   0.026572   E1
1 2016-05-14 10:54:34    0.057780   0.175499   E2
2 2016-05-14 10:54:35    0.098808   0.620986   E2
3 2016-05-14 10:54:36    0.158789   1.014819   E2
4 2016-05-14 10:54:39    0.038129   2.384590   E3
42
DougKruger

Une solution simple est de créer interval index de start and end réglage closed = both puis utilisez get_loc pour obtenir l'événement c.-à-d. (j'espère que toutes les dates sont en horodatage dtype)

df_2.index = pd.IntervalIndex.from_arrays(df_2['start'],df_2['end'],closed='both')
df_1['event'] = df_1['timestamp'].apply(lambda x : df_2.iloc[df_2.index.get_loc(x)]['event'])

Production :

 horodatage événement AB 
 0 2016-05-14 10:54:33 0.020228 0.026572 E1 
 1 2016-05-14 10:54:34 0.057780 0.175499 E2 
 2 2016-05-14 10:54:35 0,098808 0,620986 E2 
 3 2016-05-14 10:54:36 0,158789 1,014819 E2 
 4 2016-05-14 10:54:39 0,038129 2,384590 E3 
32
Bharath M
idx = pd.IntervalIndex.from_arrays(df_2['start'], df_2['end'], closed='both')
event = df_2.loc[idx.get_indexer(df_1.timestamp), 'event']

event
0    E1
1    E2
1    E2
1    E2
2    E3
Name: event, dtype: object

df_1['event'] = event.values
df_1
            timestamp         A         B event
0 2016-05-14 10:54:33  0.020228  0.026572    E1
1 2016-05-14 10:54:34  0.057780  0.175499    E2
2 2016-05-14 10:54:35  0.098808  0.620986    E2
3 2016-05-14 10:54:36  0.158789  1.014819    E2
4 2016-05-14 10:54:39  0.038129  2.384590    E3

Référence: ne question sur IntervalIndex.get_indexer.

17
cs95

Vous pouvez utiliser le module pandasql

import pandasql as ps

sqlcode = '''
select df_1.timestamp
,df_1.A
,df_1.B
,df_2.event
from df_1 
inner join df_2 
on d1.timestamp between df_2.start and df2.end
'''

newdf = ps.sqldf(sqlcode,locals())
9
chris dorn

Option 1

idx = pd.IntervalIndex.from_arrays(df_2['start'], df_2['end'], closed='both')
df_2.index=idx
df_1['event']=df_2.loc[df_1.timestamp,'event'].values

Option 2

df_2['timestamp']=df_2['end']
pd.merge_asof(df_1,df_2[['timestamp','event']],on='timestamp',direction ='forward',allow_exact_matches =True)
Out[405]: 
            timestamp         A         B event
0 2016-05-14 10:54:33  0.020228  0.026572    E1
1 2016-05-14 10:54:34  0.057780  0.175499    E2
2 2016-05-14 10:54:35  0.098808  0.620986    E2
3 2016-05-14 10:54:36  0.158789  1.014819    E2
4 2016-05-14 10:54:39  0.038129  2.384590    E3
8
WeNYoBen

Dans cette méthode, nous supposons que des objets TimeStamp sont utilisés.

df2  start                end                  event    
   0 2016-05-14 10:54:31  2016-05-14 10:54:33  E1
   1 2016-05-14 10:54:34  2016-05-14 10:54:37  E2
   2 2016-05-14 10:54:38  2016-05-14 10:54:42  E3

event_num = len(df2.event)

def get_event(t):    
    event_idx = ((t >= df2.start) & (t <= df2.end)).dot(np.arange(event_num))
    return df2.event[event_idx]

df1["event"] = df1.timestamp.transform(get_event)

Explication de get_event

Pour chaque horodatage dans df1, Dites t0 = 2016-05-14 10:54:33,

(t0 >= df2.start) & (t0 <= df2.end) Contiendra 1 vrai. (Voir l'exemple 1). Ensuite, prenez un produit scalaire avec np.arange(event_num) pour obtenir l'index de l'événement auquel appartient t0.

Exemples:

Exemple 1

    t0 >= df2.start    t0 <= df2.end     After &     np.arange(3)    
0     True                True         ->  T              0        event_idx
1    False                True         ->  F              1     ->     0
2    False                True         ->  F              2

Prenez t2 = 2016-05-14 10:54:35 Pour un autre exemple

    t2 >= df2.start    t2 <= df2.end     After &     np.arange(3)    
0     True                False        ->  F              0        event_idx
1     True                True         ->  T              1     ->     1
2    False                True         ->  F              2

Nous utilisons enfin transform pour transformer chaque horodatage en événement.

4
Tai