Je veux créer un CDF avec NumPy, mon code est le suivant:
histo = np.zeros(4096, dtype = np.int32)
for x in range(0, width):
for y in range(0, height):
histo[data[x][y]] += 1
q = 0
cdf = list()
for i in histo:
q = q + i
cdf.append(q)
Je marche par le tableau mais prends longtemps l'exécution du programme. Il y a une fonction intégrée avec cette fonctionnalité, n'est-ce pas?
Je ne sais pas vraiment ce que fait votre code, mais si vous avez hist
et bin_edges
tableaux renvoyés par numpy.histogram
vous pouvez utiliser numpy.cumsum
pour générer une somme cumulée du contenu de l'histogramme.
>>> import numpy as np
>>> hist, bin_edges = np.histogram(np.random.randint(0,10,100), normed=True)
>>> bin_edges
array([ 0. , 0.9, 1.8, 2.7, 3.6, 4.5, 5.4, 6.3, 7.2, 8.1, 9. ])
>>> hist
array([ 0.14444444, 0.11111111, 0.11111111, 0.1 , 0.1 ,
0.14444444, 0.14444444, 0.08888889, 0.03333333, 0.13333333])
>>> np.cumsum(hist)
array([ 0.14444444, 0.25555556, 0.36666667, 0.46666667, 0.56666667,
0.71111111, 0.85555556, 0.94444444, 0.97777778, 1.11111111])
L'utilisation d'un histogramme est une solution, mais cela implique de regrouper les données. Cela n'est pas nécessaire pour tracer un CDF de données empiriques. Soit F(x)
le nombre d'entrées inférieures à x
puis il monte d'une unité, exactement là où nous voyons une mesure. Ainsi, si nous trions nos échantillons, à chaque point, nous incrémentons le comptage de un (ou la fraction de 1/N) et tracer l'un contre l'autre, nous verrons le CDF empirique "exact" (c'est-à-dire non groupé).
Un exemple de code suivant illustre la méthode
import numpy as np
import matplotlib.pyplot as plt
N = 100
Z = np.random.normal(size = N)
# method 1
H,X1 = np.histogram( Z, bins = 10, normed = True )
dx = X1[1] - X1[0]
F1 = np.cumsum(H)*dx
#method 2
X2 = np.sort(Z)
F2 = np.array(range(N))/float(N)
plt.plot(X1[1:], F1)
plt.plot(X2, F2)
plt.show()
Il produit les éléments suivants
Pour compléter la solution de Dan. Dans le cas où il y a plusieurs valeurs identiques dans votre échantillon, vous pouvez utiliser numpy.unique:
Z = np.array([1,1,1,2,2,4,5,6,6,6,7,8,8])
X, F = np.unique(Z, return_index=True)
F=F/X.size
plt.plot(X, F)
mise à jour pour numpy version 1.9.0. La réponse de user545424 ne fonctionne pas dans 1.9.0. Cela marche:
>>> import numpy as np
>>> arr = np.random.randint(0,10,100)
>>> hist, bin_edges = np.histogram(arr, density=True)
>>> hist = array([ 0.16666667, 0.15555556, 0.15555556, 0.05555556, 0.08888889,
0.08888889, 0.07777778, 0.04444444, 0.18888889, 0.08888889])
>>> hist
array([ 0.1 , 0.11111111, 0.11111111, 0.08888889, 0.08888889,
0.15555556, 0.11111111, 0.13333333, 0.1 , 0.11111111])
>>> bin_edges
array([ 0. , 0.9, 1.8, 2.7, 3.6, 4.5, 5.4, 6.3, 7.2, 8.1, 9. ])
>>> np.diff(bin_edges)
array([ 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9])
>>> np.diff(bin_edges)*hist
array([ 0.09, 0.1 , 0.1 , 0.08, 0.08, 0.14, 0.1 , 0.12, 0.09, 0.1 ])
>>> cdf = np.cumsum(hist*np.diff(bin_edges))
>>> cdf
array([ 0.15, 0.29, 0.43, 0.48, 0.56, 0.64, 0.71, 0.75, 0.92, 1. ])
>>>