Supposons que j'ai un tenseur Tensorflow. Comment puis-je obtenir les dimensions (forme) du tenseur sous forme de valeurs entières? Je sais qu'il existe deux méthodes, tensor.get_shape()
et tf.shape(tensor)
, mais je ne peux pas obtenir les valeurs de forme sous forme de valeurs entières _int32
_.
Par exemple, ci-dessous, j'ai créé un tenseur 2D, et je dois obtenir le nombre de lignes et de colonnes sous la forme _int32
_ pour pouvoir appeler reshape()
afin de créer un tenseur de forme _(num_rows * num_cols, 1)
_. Cependant, la méthode tensor.get_shape()
renvoie des valeurs sous la forme Dimension
type, et non _int32
_.
_import tensorflow as tf
import numpy as np
sess = tf.Session()
tensor = tf.convert_to_tensor(np.array([[1001,1002,1003],[3,4,5]]), dtype=tf.float32)
sess.run(tensor)
# array([[ 1001., 1002., 1003.],
# [ 3., 4., 5.]], dtype=float32)
tensor_shape = tensor.get_shape()
tensor_shape
# TensorShape([Dimension(2), Dimension(3)])
print tensor_shape
# (2, 3)
num_rows = tensor_shape[0] # ???
num_cols = tensor_shape[1] # ???
tensor2 = tf.reshape(tensor, (num_rows*num_cols, 1))
# Traceback (most recent call last):
# File "<stdin>", line 1, in <module>
# File "/usr/local/lib/python2.7/site-packages/tensorflow/python/ops/gen_array_ops.py", line 1750, in reshape
# name=name)
# File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/op_def_library.py", line 454, in apply_op
# as_ref=input_arg.is_ref)
# File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 621, in convert_to_tensor
# ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
# File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/constant_op.py", line 180, in _constant_tensor_conversion_function
# return constant(v, dtype=dtype, name=name)
# File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/constant_op.py", line 163, in constant
# tensor_util.make_tensor_proto(value, dtype=dtype, shape=shape))
# File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/tensor_util.py", line 353, in make_tensor_proto
# _AssertCompatible(values, dtype)
# File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/tensor_util.py", line 290, in _AssertCompatible
# (dtype.name, repr(mismatch), type(mismatch).__name__))
# TypeError: Expected int32, got Dimension(6) of type 'Dimension' instead.
_
Pour obtenir la forme sous forme de liste d'ints, faites tensor.get_shape().as_list()
.
Pour terminer votre appel tf.shape()
, essayez tensor2 = tf.reshape(tensor, tf.TensorShape([num_rows*num_cols, 1]))
. Ou vous pouvez directement faire tensor2 = tf.reshape(tensor, tf.TensorShape([-1, 1]))
où sa première dimension peut être déduite.
Une autre façon de résoudre ceci est la suivante:
tensor_shape[0].value
Cela renverra la valeur int de l'objet Dimension.
pour un tenseur 2D, vous pouvez obtenir le nombre de lignes et de colonnes en int32 à l'aide du code suivant:
rows, columns = map(lambda i: i.value, tensor.get_shape())