web-dev-qa-db-fra.com

Comment obtenir un filtre gaussien en python

J'utilise python pour créer un filtre gaussien de taille 5x5. J'ai vu ce post ici où ils parlent d'une chose similaire mais je n'ai pas trouvé le moyen exact d'obtenir un code python équivalent à matlab function fspecial('gaussian', f_wid, sigma) Existe-t-il un autre moyen de le faire? J'ai essayé d'utiliser le code suivant:

size = 2
sizey = None
size = int(size)
if not sizey:
    sizey = size
else:
    sizey = int(sizey)
x, y = scipy.mgrid[-size: size + 1, -sizey: sizey + 1]
g = scipy.exp(- (x ** 2/float(size) + y ** 2 / float(sizey)))
print g / np.sqrt(2 * np.pi)

Le résultat obtenu est 

[[ 0.00730688  0.03274718  0.05399097  0.03274718  0.00730688]
 [ 0.03274718  0.14676266  0.24197072  0.14676266  0.03274718]
 [ 0.05399097  0.24197072  0.39894228  0.24197072  0.05399097]
 [ 0.03274718  0.14676266  0.24197072  0.14676266  0.03274718]
 [ 0.00730688  0.03274718  0.05399097  0.03274718  0.00730688]]

Ce que je veux c'est quelque chose comme ça:

   0.0029690   0.0133062   0.0219382   0.0133062   0.0029690
   0.0133062   0.0596343   0.0983203   0.0596343   0.0133062
   0.0219382   0.0983203   0.1621028   0.0983203   0.0219382
   0.0133062   0.0596343   0.0983203   0.0596343   0.0133062
   0.0029690   0.0133062   0.0219382   0.0133062   0.0029690
16
Khushboo

En règle générale, si vous souhaitez réellement obtenir le même résultat que MATLAB, le moyen le plus simple d'y parvenir consiste souvent à examiner directement la source de la fonction MATLAB.

Dans ce cas, edit fspecial:

...
  case 'gaussian' % Gaussian filter

     siz   = (p2-1)/2;
     std   = p3;

     [x,y] = meshgrid(-siz(2):siz(2),-siz(1):siz(1));
     arg   = -(x.*x + y.*y)/(2*std*std);

     h     = exp(arg);
     h(h<eps*max(h(:))) = 0;

     sumh = sum(h(:));
     if sumh ~= 0,
       h  = h/sumh;
     end;
...

Assez simple, hein? Il faut <10 minutes pour porter cela en Python:

import numpy as np

def matlab_style_gauss2D(shape=(3,3),sigma=0.5):
    """
    2D gaussian mask - should give the same result as MATLAB's
    fspecial('gaussian',[shape],[sigma])
    """
    m,n = [(ss-1.)/2. for ss in shape]
    y,x = np.ogrid[-m:m+1,-n:n+1]
    h = np.exp( -(x*x + y*y) / (2.*sigma*sigma) )
    h[ h < np.finfo(h.dtype).eps*h.max() ] = 0
    sumh = h.sum()
    if sumh != 0:
        h /= sumh
    return h

Cela me donne la même réponse que fspecial à l'erreur d'arrondi:

 >> fspecial('gaussian',5,1)

 0.002969     0.013306     0.021938     0.013306     0.002969
 0.013306     0.059634      0.09832     0.059634     0.013306
 0.021938      0.09832       0.1621      0.09832     0.021938
 0.013306     0.059634      0.09832     0.059634     0.013306
 0.002969     0.013306     0.021938     0.013306     0.002969

 : matlab_style_gauss2D((5,5),1)

array([[ 0.002969,  0.013306,  0.021938,  0.013306,  0.002969],
       [ 0.013306,  0.059634,  0.09832 ,  0.059634,  0.013306],
       [ 0.021938,  0.09832 ,  0.162103,  0.09832 ,  0.021938],
       [ 0.013306,  0.059634,  0.09832 ,  0.059634,  0.013306],
       [ 0.002969,  0.013306,  0.021938,  0.013306,  0.002969]])
27
ali_m

Vous pouvez également essayer ceci (en tant que produit de 2 variables aléatoires indépendantes gaussiennes 1D) pour obtenir un noyau gaussien 2D:

from numpy import pi, exp, sqrt
s, k = 1, 2 #  generate a (2k+1)x(2k+1) gaussian kernel with mean=0 and sigma = s
probs = [exp(-z*z/(2*s*s))/sqrt(2*pi*s*s) for z in range(-k,k+1)] 
kernel = np.outer(probs, probs)
print kernel

#[[ 0.00291502  0.00792386  0.02153928  0.00792386  0.00291502]
#[ 0.00792386  0.02153928  0.05854983  0.02153928  0.00792386]
#[ 0.02153928  0.05854983  0.15915494  0.05854983  0.02153928]
#[ 0.00792386  0.02153928  0.05854983  0.02153928  0.00792386]
#[ 0.00291502  0.00792386  0.02153928  0.00792386  0.00291502]]

import matplotlib.pylab as plt
plt.imshow(kernel)
plt.colorbar()
plt.show()

 enter image description here

3
Sandipan Dey

J'ai trouvé une solution similaire pour ce problème:

def fspecial_gauss(size, sigma):

    """Function to mimic the 'fspecial' gaussian MATLAB function
    """

    x, y = numpy.mgrid[-size//2 + 1:size//2 + 1, -size//2 + 1:size//2 + 1]
    g = numpy.exp(-((x**2 + y**2)/(2.0*sigma**2)))
    return g/g.sum()
3
sparklearner

Cette fonction implémente une fonctionnalité similaire à fspecial dans matlab 

http://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.get_window.html à partir du signal d'importation scipy

>>>signal.get_window(('gaussian',2),3)
>>>array([ 0.8824969,  1.       ,  0.8824969])

Cette fonction semble générer uniquement des noyaux 1D 

J'imagine que vous pourriez implémenter du code pour générer un masque gaussien vous-même, ainsi que d'autres l'ont souligné.

2
SentinalBais

Bonjour, je pense que le problème est que pour un filtre gaussien, le facteur de normalisation dépend du nombre de dimensions que vous avez utilisées. Ainsi, le filtre ressemble à ceci:formula
Ce qui vous manque, c’est le carré du facteur de normalisation! Et il est nécessaire de renormaliser toute la matrice à cause de la précision informatique! Le code est joint ici:

def gaussian_filter(shape =(5,5), sigma=1):
    x, y = [Edge /2 for Edge in shape]
    grid = np.array([[((i**2+j**2)/(2.0*sigma**2)) for i in xrange(-x, x+1)] for j in xrange(-y, y+1)])
    g_filter = np.exp(-grid)/(2*np.pi*sigma**2)
    g_filter /= np.sum(g_filter)
    return g_filter
print gaussian_filter()

La sortie sans normalisée à la somme de 1:

[[ 0.00291502  0.01306423  0.02153928  0.01306423  0.00291502]
 [ 0.01306423  0.05854983  0.09653235  0.05854983  0.01306423]
 [ 0.02153928  0.09653235  0.15915494  0.09653235  0.02153928]
 [ 0.01306423  0.05854983  0.09653235  0.05854983  0.01306423]
 [ 0.00291502  0.01306423  0.02153928  0.01306423  0.00291502]]

La sortie divisée par np.sum (g_filter):

[[ 0.00296902  0.01330621  0.02193823  0.01330621  0.00296902]
 [ 0.01330621  0.0596343   0.09832033  0.0596343   0.01330621]
 [ 0.02193823  0.09832033  0.16210282  0.09832033  0.02193823]
 [ 0.01330621  0.0596343   0.09832033  0.0596343   0.01330621]
 [ 0.00296902  0.01330621  0.02193823  0.01330621  0.00296902]]
0
Gordon Tseng

voici un générateur de fenêtre nd-gaussian:

def gen_gaussian_kernel(shape, mean, var):
    coors = [range(shape[d]) for d in range(len(shape))]
    k = np.zeros(shape=shape)
    cartesian_product = [[]]
    for coor in coors:
        cartesian_product = [x + [y] for x in cartesian_product for y in coor]
    for c in cartesian_product:
        s = 0
        for cc, m in Zip(c,mean):
            s += (cc - m)**2
        k[Tuple(c)] = exp(-s/(2*var))
    return k

cette fonction vous donnera une fenêtre gaussienne non normalisée avec une forme, un centre et une variance donnés. par exemple: gen_gaussian_kernel (forme = (3,3,3), moyenne = (1,1,1), var = 1.0) sortie->

[[[ 0.22313016  0.36787944  0.22313016]
  [ 0.36787944  0.60653066  0.36787944]
  [ 0.22313016  0.36787944  0.22313016]]

 [[ 0.36787944  0.60653066  0.36787944]
  [ 0.60653066  1.          0.60653066]
  [ 0.36787944  0.60653066  0.36787944]]

 [[ 0.22313016  0.36787944  0.22313016]
  [ 0.36787944  0.60653066  0.36787944]
  [ 0.22313016  0.36787944  0.22313016]]]
0
weiyixie