Je suis nouveau sur tensorflow et keras. J'essaie de former un modèle pour identifier différentes images de papier de roche et de ciseaux. J'utilise un tutoriel en ligne pour cela et ils m'ont fourni une feuille de calcul google collab. Lorsque je forme le modèle sur google collab, tout fonctionne bien, mais si j'essaie de former le modèle sur ma machine, cela me donne cette erreur: ValueValueError: Empty training data
J'ai essayé de changer la taille du lot et j'ai également essayé de changer la quantité d'images dans l'ensemble de données, mais cela n'aide pas (et cela ne devrait pas).
Voici mon code:
###### ROCK PAPER SISSORS #######
import os
import numpy as np
import cv2
import tensorflow as tf
import keras_preprocessing
from keras_preprocessing import image
from keras_preprocessing.image import ImageDataGenerator
import matplotlib.pyplot as plt
# import matplotlib.image as mpimg
# Provide the path to the directory of the classes
rock_dir = os.path.join('/media/visheshchanana/New Volume/Projects/datasets/RPS/rps/rock')
paper_dir = '/media/visheshchanana/New Volume/Projects/datasets/RPS/rps/paper'
scissors_dir = '/media/visheshchanana/New Volume/Projects/datasets/RPS/rps/scissors'
rock_files = os.listdir(rock_dir)
# print(rock_files[:10])
#
paper_files = os.listdir(paper_dir)
# print(paper_files[:10])
#
scissors_files = os.listdir(scissors_dir)
# # print(scissors_files[:10])
# Use the augmentation tool to change the augmentation of the images so that we can have a better classifier
TRAINING_DIR = "/media/visheshchanana/New Volume/Projects/datasets/RPS/rps"
training_datagen = ImageDataGenerator(
rescale = 1./255,
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
# Provide the path to the validation dataset
VALIDATION_DIR = "/media/visheshchanana/New Volume/Projects/datasets/RPS/RPS_validation"
validation_datagen = ImageDataGenerator(rescale = 1./255)
train_generator = training_datagen.flow_from_directory(
TRAINING_DIR,
target_size=(150,150),
class_mode='categorical'
)
validation_generator = validation_datagen.flow_from_directory(
VALIDATION_DIR,
target_size=(150,150),
class_mode='categorical'
)
model = tf.keras.models.Sequential([
# Note the input shape is the desired size of the image 150x150 with 3 bytes color
# This is the first convolution
tf.keras.layers.Conv2D(64, (3,3), activation='relu', input_shape=(150, 150, 3)),
tf.keras.layers.MaxPooling2D(2, 2),
# The second convolution
tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
# The third convolution
tf.keras.layers.Conv2D(128, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
# The fourth convolution
tf.keras.layers.Conv2D(128, (3,3), activation='relu'),
tf.keras.layers.MaxPooling2D(2,2),
# Flatten the results to feed into a DNN
tf.keras.layers.Flatten(),
tf.keras.layers.Dropout(0.5),
# 512 neuron hidden layer
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dense(3, activation='softmax')
])
model.summary()
model.compile(loss = 'categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
history = model.fit_generator(train_generator, epochs=5, validation_data = validation_generator, verbose = 1)
L'ensemble de données est le même que celui utilisé dans la collab google. Je ne peux pas comprendre la raison de cette erreur.
J'ai eu le même problème. Mon modèle s'entraîne et donne cette erreur (ValueValueError: données d'entraînement vides) à la fin de la première époque. J'ai compris que c'était parce qu'il n'y avait aucune donnée dans le chemin de validation.