Ci-dessous est mon dataframe. J'ai effectué quelques transformations pour créer la colonne de catégorie et j'ai supprimé la colonne d'origine dont elle était dérivée. Maintenant, je dois faire un regroupement pour supprimer les doublons, par exemple Love
et Fashion
peuvent être cumulés via une somme groupby
.
df.colunms = array([category, clicks, revenue, date, impressions, size], dtype=object)
df.values=
[[Love 0 0.36823 2013-11-04 380 300x250]
[Love 183 474.81522 2013-11-04 374242 300x250]
[Fashion 0 0.19434 2013-11-04 197 300x250]
[Fashion 9 18.26422 2013-11-04 13363 300x250]]
Voici l'index qui est créé lorsque j'ai créé le dataframe
print df.index
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48])
Je suppose que je veux supprimer l'index, créer la date et la catégorie en tant que multiindex
, puis faire une somme groupby
des mesures. Comment faire cela dans pandas dataframe?
df.head(15).to_dict()= {'category': {0: 'Love', 1: 'Love', 2: 'Fashion', 3: 'Fashion', 4: 'Hair', 5: 'Movies', 6: 'Movies', 7: 'Health', 8: 'Health', 9: 'Celebs', 10: 'Celebs', 11: 'Travel', 12: 'Weightloss', 13: 'Diet', 14: 'Bags'}, 'impressions': {0: 380, 1: 374242, 2: 197, 3: 13363, 4: 4, 5: 189, 6: 60632, 7: 269, 8: 40189, 9: 138, 10: 66590, 11: 2227, 12: 22668, 13: 21707, 14: 229}, 'date': {0: '2013-11-04', 1: '2013-11-04', 2: '2013-11-04', 3: '2013-11-04', 4: '2013-11-04', 5: '2013-11-04', 6: '2013-11-04', 7: '2013-11-04', 8: '2013-11-04', 9: '2013-11-04', 10: '2013-11-04', 11: '2013-11-04', 12: '2013-11-04', 13: '2013-11-04', 14: '2013-11-04'}, 'cpc_cpm_revenue': {0: 0.36823, 1: 474.81522000000001, 2: 0.19434000000000001, 3: 18.264220000000002, 4: 0.00080000000000000004, 5: 0.23613000000000001, 6: 81.391139999999993, 7: 0.27171000000000001, 8: 51.258200000000002, 9: 0.11536, 10: 83.966859999999997, 11: 3.43248, 12: 31.695889999999999, 13: 28.459320000000002, 14: 0.43524000000000002}, 'clicks': {0: 0, 1: 183, 2: 0, 3: 9, 4: 0, 5: 1, 6: 20, 7: 0, 8: 21, 9: 0, 10: 32, 11: 1, 12: 12, 13: 9, 14: 2}, 'size': {0: '300x250', 1: '300x250', 2: '300x250', 3: '300x250', 4: '300x250', 5: '300x250', 6: '300x250', 7: '300x250', 8: '300x250', 9: '300x250', 10: '300x250', 11: '300x250', 12: '300x250', 13: '300x250', 14: '300x250'}}
Python est 2.7 et pandas est 0.7.0 sur Ubuntu 12.04. Ci-dessous est l'erreur que j'obtiens si j'exécute le ci-dessous
import pandas
print pandas.__version__
df = pandas.DataFrame.from_dict(
{
'category': {0: 'Love', 1: 'Love', 2: 'Fashion', 3: 'Fashion', 4: 'Hair', 5: 'Movies', 6: 'Movies', 7: 'Health', 8: 'Health', 9: 'Celebs', 10: 'Celebs', 11: 'Travel', 12: 'Weightloss', 13: 'Diet', 14: 'Bags'},
'impressions': {0: 380, 1: 374242, 2: 197, 3: 13363, 4: 4, 5: 189, 6: 60632, 7: 269, 8: 40189, 9: 138, 10: 66590, 11: 2227, 12: 22668, 13: 21707, 14: 229},
'date': {0: '2013-11-04', 1: '2013-11-04', 2: '2013-11-04', 3: '2013-11-04', 4: '2013-11-04', 5: '2013-11-04', 6: '2013-11-04', 7: '2013-11-04', 8: '2013-11-04', 9: '2013-11-04', 10: '2013-11-04', 11: '2013-11-04', 12: '2013-11-04', 13: '2013-11-04', 14: '2013-11-04'}, 'cpc_cpm_revenue': {0: 0.36823, 1: 474.81522000000001, 2: 0.19434000000000001, 3: 18.264220000000002, 4: 0.00080000000000000004, 5: 0.23613000000000001, 6: 81.391139999999993, 7: 0.27171000000000001, 8: 51.258200000000002, 9: 0.11536, 10: 83.966859999999997, 11: 3.43248, 12: 31.695889999999999, 13: 28.459320000000002, 14: 0.43524000000000002}, 'clicks': {0: 0, 1: 183, 2: 0, 3: 9, 4: 0, 5: 1, 6: 20, 7: 0, 8: 21, 9: 0, 10: 32, 11: 1, 12: 12, 13: 9, 14: 2}, 'size': {0: '300x250', 1: '300x250', 2: '300x250', 3: '300x250', 4: '300x250', 5: '300x250', 6: '300x250', 7: '300x250', 8: '300x250', 9: '300x250', 10: '300x250', 11: '300x250', 12: '300x250', 13: '300x250', 14: '300x250'}
}
)
df.set_index(['date', 'category'], inplace=True)
df.groupby(level=[0,1]).sum()
Traceback (most recent call last):
File "/home/ubuntu/workspace/devops/reports/groupby_sub.py", line 9, in <module>
df.set_index(['date', 'category'], inplace=True)
File "/usr/lib/pymodules/python2.7/pandas/core/frame.py", line 1927, in set_index
raise Exception('Index has duplicate keys: %s' % duplicates)
Exception: Index has duplicate keys: [('2013-11-04', 'Celebs'), ('2013-11-04', 'Fashion'), ('2013-11-04', 'Health'), ('2013-11-04', 'Love'), ('2013-11-04', 'Movies')]
Vous pouvez créer l'index sur la trame de données existante. Avec le sous-ensemble de données fourni, cela fonctionne pour moi:
import pandas
df = pandas.DataFrame.from_dict(
{
'category': {0: 'Love', 1: 'Love', 2: 'Fashion', 3: 'Fashion', 4: 'Hair', 5: 'Movies', 6: 'Movies', 7: 'Health', 8: 'Health', 9: 'Celebs', 10: 'Celebs', 11: 'Travel', 12: 'Weightloss', 13: 'Diet', 14: 'Bags'},
'impressions': {0: 380, 1: 374242, 2: 197, 3: 13363, 4: 4, 5: 189, 6: 60632, 7: 269, 8: 40189, 9: 138, 10: 66590, 11: 2227, 12: 22668, 13: 21707, 14: 229},
'date': {0: '2013-11-04', 1: '2013-11-04', 2: '2013-11-04', 3: '2013-11-04', 4: '2013-11-04', 5: '2013-11-04', 6: '2013-11-04', 7: '2013-11-04', 8: '2013-11-04', 9: '2013-11-04', 10: '2013-11-04', 11: '2013-11-04', 12: '2013-11-04', 13: '2013-11-04', 14: '2013-11-04'}, 'cpc_cpm_revenue': {0: 0.36823, 1: 474.81522000000001, 2: 0.19434000000000001, 3: 18.264220000000002, 4: 0.00080000000000000004, 5: 0.23613000000000001, 6: 81.391139999999993, 7: 0.27171000000000001, 8: 51.258200000000002, 9: 0.11536, 10: 83.966859999999997, 11: 3.43248, 12: 31.695889999999999, 13: 28.459320000000002, 14: 0.43524000000000002}, 'clicks': {0: 0, 1: 183, 2: 0, 3: 9, 4: 0, 5: 1, 6: 20, 7: 0, 8: 21, 9: 0, 10: 32, 11: 1, 12: 12, 13: 9, 14: 2}, 'size': {0: '300x250', 1: '300x250', 2: '300x250', 3: '300x250', 4: '300x250', 5: '300x250', 6: '300x250', 7: '300x250', 8: '300x250', 9: '300x250', 10: '300x250', 11: '300x250', 12: '300x250', 13: '300x250', 14: '300x250'}
}
)
df.set_index(['date', 'category'], inplace=True)
df.groupby(level=[0,1]).sum()
Si vous rencontrez des problèmes d'index en double avec l'ensemble de données complet, vous devrez nettoyer un peu les données. Supprimez les lignes en double si cela est possible. Si les lignes en double sont valides, qu'est-ce qui les distingue les unes des autres? Si vous pouvez ajouter cela au cadre de données et l'inclure dans l'index, c'est l'idéal. Sinon, créez simplement une colonne factice dont la valeur par défaut est 1, mais peut être 2 ou 3 ou ... N
dans le cas de N
doublons - puis incluez ce champ dans l'index ainsi que.
Alternativement, je suis presque sûr que vous pouvez ignorer la création d'index et directement groupby
avec des colonnes:
df.groupby(by=['date', 'category']).sum()
Encore une fois, cela fonctionne sur le sous-ensemble de données que vous avez publié.