J'essaie de tracer des données d'une caméra en temps réel à l'aide d'OpenCV. Cependant, le traçage en temps réel (avec matplotlib) ne semble pas fonctionner.
J'ai isolé le problème dans cet exemple simple:
fig = plt.figure()
plt.axis([0, 1000, 0, 1])
i = 0
x = list()
y = list()
while i < 1000:
temp_y = np.random.random()
x.append(i)
y.append(temp_y)
plt.scatter(i, temp_y)
i += 1
plt.show()
Je m'attendrais à ce que cet exemple trace 1000 points individuellement. En réalité, la fenêtre s’affiche avec le premier point (ok avec cela), puis attend la fin de la boucle avant de remplir le reste du graphique.
Des idées pour lesquelles je ne vois pas de points peuplés un à un?
Voici la version de travail du code en question (nécessite au moins la version Matplotlib 1.1.0 du 2011-11-14):
import numpy as np
import matplotlib.pyplot as plt
plt.axis([0, 10, 0, 1])
for i in range(10):
y = np.random.random()
plt.scatter(i, y)
plt.pause(0.05)
plt.show()
Notez certains des changements:
plt.pause(0.05)
pour dessiner les nouvelles données et exécuter la boucle d'événement de l'interface graphique (permettant une interaction avec la souris).Si vous êtes intéressé par le traçage en temps réel, je vous conseillerais de regarder l'API d'animation de matplotlib . En particulier, l'utilisation de blit
pour éviter de redessiner l'arrière-plan sur chaque image peut vous procurer des gains de vitesse substantiels (~ 10x):
#!/usr/bin/env python
import numpy as np
import time
import matplotlib
matplotlib.use('GTKAgg')
from matplotlib import pyplot as plt
def randomwalk(dims=(256, 256), n=20, sigma=5, alpha=0.95, seed=1):
""" A simple random walk with memory """
r, c = dims
gen = np.random.RandomState(seed)
pos = gen.Rand(2, n) * ((r,), (c,))
old_delta = gen.randn(2, n) * sigma
while True:
delta = (1. - alpha) * gen.randn(2, n) * sigma + alpha * old_delta
pos += delta
for ii in xrange(n):
if not (0. <= pos[0, ii] < r):
pos[0, ii] = abs(pos[0, ii] % r)
if not (0. <= pos[1, ii] < c):
pos[1, ii] = abs(pos[1, ii] % c)
old_delta = delta
yield pos
def run(niter=1000, doblit=True):
"""
Display the simulation using matplotlib, optionally using blit for speed
"""
fig, ax = plt.subplots(1, 1)
ax.set_aspect('equal')
ax.set_xlim(0, 255)
ax.set_ylim(0, 255)
ax.hold(True)
rw = randomwalk()
x, y = rw.next()
plt.show(False)
plt.draw()
if doblit:
# cache the background
background = fig.canvas.copy_from_bbox(ax.bbox)
points = ax.plot(x, y, 'o')[0]
tic = time.time()
for ii in xrange(niter):
# update the xy data
x, y = rw.next()
points.set_data(x, y)
if doblit:
# restore background
fig.canvas.restore_region(background)
# redraw just the points
ax.draw_artist(points)
# fill in the axes rectangle
fig.canvas.blit(ax.bbox)
else:
# redraw everything
fig.canvas.draw()
plt.close(fig)
print "Blit = %s, average FPS: %.2f" % (
str(doblit), niter / (time.time() - tic))
if __== '__main__':
run(doblit=False)
run(doblit=True)
Sortie:
Blit = False, average FPS: 54.37
Blit = True, average FPS: 438.27
show
n'est probablement pas le meilleur choix pour cela. Ce que je voudrais faire est d'utiliser pyplot.draw()
à la place. Vous pouvez également vouloir inclure un petit retard (par exemple, time.sleep(0.05)
) dans la boucle pour que vous puissiez voir les tracés se dérouler. Si je modifie votre exemple, cela fonctionne pour moi et je vois chaque point apparaître un à la fois.
Je sais que je suis un peu en retard pour répondre à cette question. Néanmoins, il y a quelque temps, j'ai créé du code pour tracer des graphes dynamiques que je voudrais partager:
###################################################################
# #
# PLOTTING A LIVE GRAPH #
# ---------------------------- #
# EMBED A MATPLOTLIB ANIMATION INSIDE YOUR #
# OWN GUI! #
# #
###################################################################
import sys
import os
from PyQt4 import QtGui
from PyQt4 import QtCore
import functools
import numpy as np
import random as rd
import matplotlib
matplotlib.use("Qt4Agg")
from matplotlib.figure import Figure
from matplotlib.animation import TimedAnimation
from matplotlib.lines import Line2D
from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas
import time
import threading
def setCustomSize(x, width, height):
sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed)
sizePolicy.setHorizontalStretch(0)
sizePolicy.setVerticalStretch(0)
sizePolicy.setHeightForWidth(x.sizePolicy().hasHeightForWidth())
x.setSizePolicy(sizePolicy)
x.setMinimumSize(QtCore.QSize(width, height))
x.setMaximumSize(QtCore.QSize(width, height))
''''''
class CustomMainWindow(QtGui.QMainWindow):
def __init__(self):
super(CustomMainWindow, self).__init__()
# Define the geometry of the main window
self.setGeometry(300, 300, 800, 400)
self.setWindowTitle("my first window")
# Create FRAME_A
self.FRAME_A = QtGui.QFrame(self)
self.FRAME_A.setStyleSheet("QWidget { background-color: %s }" % QtGui.QColor(210,210,235,255).name())
self.LAYOUT_A = QtGui.QGridLayout()
self.FRAME_A.setLayout(self.LAYOUT_A)
self.setCentralWidget(self.FRAME_A)
# Place the zoom button
self.zoomBtn = QtGui.QPushButton(text = 'zoom')
setCustomSize(self.zoomBtn, 100, 50)
self.zoomBtn.clicked.connect(self.zoomBtnAction)
self.LAYOUT_A.addWidget(self.zoomBtn, *(0,0))
# Place the matplotlib figure
self.myFig = CustomFigCanvas()
self.LAYOUT_A.addWidget(self.myFig, *(0,1))
# Add the callbackfunc to ..
myDataLoop = threading.Thread(name = 'myDataLoop', target = dataSendLoop, daemon = True, args = (self.addData_callbackFunc,))
myDataLoop.start()
self.show()
''''''
def zoomBtnAction(self):
print("zoom in")
self.myFig.zoomIn(5)
''''''
def addData_callbackFunc(self, value):
# print("Add data: " + str(value))
self.myFig.addData(value)
''' End Class '''
class CustomFigCanvas(FigureCanvas, TimedAnimation):
def __init__(self):
self.addedData = []
print(matplotlib.__version__)
# The data
self.xlim = 200
self.n = np.linspace(0, self.xlim - 1, self.xlim)
a = []
b = []
a.append(2.0)
a.append(4.0)
a.append(2.0)
b.append(4.0)
b.append(3.0)
b.append(4.0)
self.y = (self.n * 0.0) + 50
# The window
self.fig = Figure(figsize=(5,5), dpi=100)
self.ax1 = self.fig.add_subplot(111)
# self.ax1 settings
self.ax1.set_xlabel('time')
self.ax1.set_ylabel('raw data')
self.line1 = Line2D([], [], color='blue')
self.line1_tail = Line2D([], [], color='red', linewidth=2)
self.line1_head = Line2D([], [], color='red', marker='o', markeredgecolor='r')
self.ax1.add_line(self.line1)
self.ax1.add_line(self.line1_tail)
self.ax1.add_line(self.line1_head)
self.ax1.set_xlim(0, self.xlim - 1)
self.ax1.set_ylim(0, 100)
FigureCanvas.__init__(self, self.fig)
TimedAnimation.__init__(self, self.fig, interval = 50, blit = True)
def new_frame_seq(self):
return iter(range(self.n.size))
def _init_draw(self):
lines = [self.line1, self.line1_tail, self.line1_head]
for l in lines:
l.set_data([], [])
def addData(self, value):
self.addedData.append(value)
def zoomIn(self, value):
bottom = self.ax1.get_ylim()[0]
top = self.ax1.get_ylim()[1]
bottom += value
top -= value
self.ax1.set_ylim(bottom,top)
self.draw()
def _step(self, *args):
# Extends the _step() method for the TimedAnimation class.
try:
TimedAnimation._step(self, *args)
except Exception as e:
self.abc += 1
print(str(self.abc))
TimedAnimation._stop(self)
pass
def _draw_frame(self, framedata):
margin = 2
while(len(self.addedData) > 0):
self.y = np.roll(self.y, -1)
self.y[-1] = self.addedData[0]
del(self.addedData[0])
self.line1.set_data(self.n[ 0 : self.n.size - margin ], self.y[ 0 : self.n.size - margin ])
self.line1_tail.set_data(np.append(self.n[-10:-1 - margin], self.n[-1 - margin]), np.append(self.y[-10:-1 - margin], self.y[-1 - margin]))
self.line1_head.set_data(self.n[-1 - margin], self.y[-1 - margin])
self._drawn_artists = [self.line1, self.line1_tail, self.line1_head]
''' End Class '''
# You need to setup a signal slot mechanism, to
# send data to your GUI in a thread-safe way.
# Believe me, if you don't do this right, things
# go very very wrong..
class Communicate(QtCore.QObject):
data_signal = QtCore.pyqtSignal(float)
''' End Class '''
def dataSendLoop(addData_callbackFunc):
# Setup the signal-slot mechanism.
mySrc = Communicate()
mySrc.data_signal.connect(addData_callbackFunc)
# Simulate some data
n = np.linspace(0, 499, 500)
y = 50 + 25*(np.sin(n / 8.3)) + 10*(np.sin(n / 7.5)) - 5*(np.sin(n / 1.5))
i = 0
while(True):
if(i > 499):
i = 0
time.sleep(0.1)
mySrc.data_signal.emit(y[i]) # <- Here you emit a signal!
i += 1
###
###
if __name__== '__main__':
app = QtGui.QApplication(sys.argv)
QtGui.QApplication.setStyle(QtGui.QStyleFactory.create('Plastique'))
myGUI = CustomMainWindow()
sys.exit(app.exec_())
''''''
Juste l'essayer. Copiez-collez ce code dans un nouveau fichier python et exécutez-le. Vous devriez obtenir un beau graphique se déplaçant sans à-coups:
Aucune des méthodes n'a fonctionné pour moi. Mais j'ai trouvé ceci l'intrigue en temps réel de matplotlib ne fonctionne pas alors qu'elle est encore dans une boucle
Tout ce dont vous avez besoin est d'ajouter
plt.pause(0.0001)
et que vous pouviez voir le nouveau complot.
Votre code devrait donc ressembler à ceci et il fonctionnera
import matplotlib.pyplot as plt
import numpy as np
plt.ion() ## Note this correction
fig=plt.figure()
plt.axis([0,1000,0,1])
i=0
x=list()
y=list()
while i <1000:
temp_y=np.random.random();
x.append(i);
y.append(temp_y);
plt.scatter(i,temp_y);
i+=1;
plt.show()
plt.pause(0.0001) #Note this correction
Les réponses supérieures (et bien d’autres) reposaient sur plt.pause()
, mais c’était une manière ancienne d’animer l’intrigue dans matplotlib. Non seulement il est lent, mais il attire également le focus sur chaque mise à jour (j'ai eu du mal à arrêter le processus de traçage python.).
TL; DR: vous pouvez utiliser matplotlib.animation
( comme indiqué dans la documentation ).
Après avoir exploré diverses réponses et morceaux de code, cela s’est en fait révélé être une manière fluide de dessiner les données entrantes à l’infini pour moi.
Voici mon code pour un démarrage rapide. Il trace le temps actuel avec un nombre aléatoire compris entre [0, 100) toutes les 200 ms à l'infini, tout en gérant le redimensionnement automatique de la vue:
from datetime import datetime
from matplotlib import pyplot
from matplotlib.animation import FuncAnimation
from random import randrange
x_data, y_data = [], []
figure = pyplot.figure()
line, = pyplot.plot_date(x_data, y_data, '-')
def update(frame):
x_data.append(datetime.now())
y_data.append(randrange(0, 100))
line.set_data(x_data, y_data)
figure.gca().relim()
figure.gca().autoscale_view()
return line,
animation = FuncAnimation(figure, update, interval=200)
pyplot.show()
Vous pouvez également explorer blit
pour des performances encore meilleures comme dans la documentation FuncAnimation .
Un exemple tiré de la documentation blit
:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
fig, ax = plt.subplots()
xdata, ydata = [], []
ln, = plt.plot([], [], 'ro')
def init():
ax.set_xlim(0, 2*np.pi)
ax.set_ylim(-1, 1)
return ln,
def update(frame):
xdata.append(frame)
ydata.append(np.sin(frame))
ln.set_data(xdata, ydata)
return ln,
ani = FuncAnimation(fig, update, frames=np.linspace(0, 2*np.pi, 128),
init_func=init, blit=True)
plt.show()
Je sais que cette question est ancienne, mais il existe maintenant un paquetage appelé drawnow sur GitHub en tant que "python-drawnow". Ceci fournit une interface similaire à celle de MATLAB - vous pouvez facilement mettre à jour une figure.
Un exemple pour votre cas d'utilisation:
import matplotlib.pyplot as plt
from drawnow import drawnow
def make_fig():
plt.scatter(x, y) # I think you meant this
plt.ion() # enable interactivity
fig = plt.figure() # make a figure
x = list()
y = list()
for i in range(1000):
temp_y = np.random.random()
x.append(i)
y.append(temp_y) # or any arbitrary update to your figure's data
i += 1
drawnow(make_fig)
python-drawnow est une mince couche autour de plt.draw
mais permet de confirmer (ou de déboguer) après l'affichage de la figure.
Le problème semble être que vous vous attendez à ce que plt.show()
affiche la fenêtre puis revienne. Ça ne fait pas ça. Le programme s’arrête à ce point et ne reprend que lorsque vous fermez la fenêtre. Vous devriez pouvoir tester cela: Si vous fermez la fenêtre, une autre fenêtre devrait s’ouvrir.
Pour résoudre ce problème, appelez simplement plt.show()
une fois après votre boucle. Ensuite, vous obtenez l'intrigue complète. (Mais pas un 'tracé en temps réel')
Vous pouvez essayer de définir l'argument de mot-clé block
comme ceci: plt.show(block=False)
une fois au début, puis utilisez .draw()
pour mettre à jour.
Voici une version que je dois travailler sur mon système.
import matplotlib.pyplot as plt
from drawnow import drawnow
import numpy as np
def makeFig():
plt.scatter(xList,yList) # I think you meant this
plt.ion() # enable interactivity
fig=plt.figure() # make a figure
xList=list()
yList=list()
for i in np.arange(50):
y=np.random.random()
xList.append(i)
yList.append(y)
drawnow(makeFig)
#makeFig() The drawnow(makeFig) command can be replaced
#plt.draw() with makeFig(); plt.draw()
plt.pause(0.001)
La ligne drawnow (makeFig) peut être remplacée par un makeFig (); plt.draw () sequence et cela fonctionne toujours bien.
Si vous voulez dessiner et ne pas figer votre fil au fur et à mesure que vous tracez plus de points, utilisez plutôt plt.pause () et non time.sleep ().
im en utilisant le code suivant pour tracer une série de coordonnées xy.
import matplotlib.pyplot as plt
import math
pi = 3.14159
fig, ax = plt.subplots()
x = []
y = []
def PointsInCircum(r,n=20):
circle = [(math.cos(2*pi/n*x)*r,math.sin(2*pi/n*x)*r) for x in xrange(0,n+1)]
return circle
circle_list = PointsInCircum(3, 50)
for t in range(len(circle_list)):
if t == 0:
points, = ax.plot(x, y, marker='o', linestyle='--')
ax.set_xlim(-4, 4)
ax.set_ylim(-4, 4)
else:
x_coord, y_coord = circle_list.pop()
x.append(x_coord)
y.append(y_coord)
points.set_data(x, y)
plt.pause(0.01)