web-dev-qa-db-fra.com

Comment tracer les scores de grille de GridSearchCV?

Je cherche un moyen de représenter graphiquement grid_scores_ à partir de GridSearchCV dans sklearn. Dans cet exemple, j'essaie de rechercher sur la grille les meilleurs paramètres gamma et C pour un algorithme SVR. Mon code se présente comme suit: 

    C_range = 10.0 ** np.arange(-4, 4)
    gamma_range = 10.0 ** np.arange(-4, 4)
    param_grid = dict(gamma=gamma_range.tolist(), C=C_range.tolist())
    grid = GridSearchCV(SVR(kernel='rbf', gamma=0.1),param_grid, cv=5)
    grid.fit(X_train,y_train)
    print(grid.grid_scores_)

Après avoir exécuté le code et imprimé les scores de la grille, le résultat suivant est obtenu:

[mean: -3.28593, std: 1.69134, params: {'gamma': 0.0001, 'C': 0.0001}, mean: -3.29370, std: 1.69346, params: {'gamma': 0.001, 'C': 0.0001}, mean: -3.28933, std: 1.69104, params: {'gamma': 0.01, 'C': 0.0001}, mean: -3.28925, std: 1.69106, params: {'gamma': 0.1, 'C': 0.0001}, mean: -3.28925, std: 1.69106, params: {'gamma': 1.0, 'C': 0.0001}, mean: -3.28925, std: 1.69106, params: {'gamma': 10.0, 'C': 0.0001},etc] 

Je voudrais visualiser tous les scores (valeurs moyennes) en fonction des paramètres gamma et C. Le graphique que j'essaie d'obtenir devrait ressembler à ceci:

 enter image description here

Où l'axe des x est le gamma, l'axe des y est le score moyen (erreur quadratique moyenne dans ce cas), et des lignes différentes représentent des valeurs de C différentes. 

14
kroonike
from sklearn.svm import SVC
from sklearn.grid_search import GridSearchCV
from sklearn import datasets
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np

digits = datasets.load_digits()
X = digits.data
y = digits.target

clf_ = SVC(kernel='rbf')
Cs = [1, 10, 100, 1000]
Gammas = [1e-3, 1e-4]
clf = GridSearchCV(clf_,
            dict(C=Cs,
                 gamma=Gammas),
                 cv=2,
                 pre_dispatch='1*n_jobs',
                 n_jobs=1)

clf.fit(X, y)

scores = [x[1] for x in clf.grid_scores_]
scores = np.array(scores).reshape(len(Cs), len(Gammas))

for ind, i in enumerate(Cs):
    plt.plot(Gammas, scores[ind], label='C: ' + str(i))
plt.legend()
plt.xlabel('Gamma')
plt.ylabel('Mean score')
plt.show()
  • Le code est basé sur this .
  • Seule partie déroutante: sklearn respectera toujours l'ordre de C & Gamma -> exemple officiel utilise cet "ordre"

Sortie:

 Example plot

9
sascha

Le code affiché par @sascha est correct. Cependant, l'attribut grid_scores_ sera bientôt obsolète. Il est préférable d'utiliser l'attribut cv_results.

Elle peut être implémentée de la même manière que celle de la méthode @sascha:

def plot_grid_search(cv_results, grid_param_1, grid_param_2, name_param_1, name_param_2):
    # Get Test Scores Mean and std for each grid search
    scores_mean = cv_results['mean_test_score']
    scores_mean = np.array(scores_mean).reshape(len(grid_param_2),len(grid_param_1))

    scores_sd = cv_results['std_test_score']
    scores_sd = np.array(scores_sd).reshape(len(grid_param_2),len(grid_param_1))

    # Plot Grid search scores
    _, ax = plt.subplots(1,1)

    # Param1 is the X-axis, Param 2 is represented as a different curve (color line)
    for idx, val in enumerate(grid_param_2):
        ax.plot(grid_param_1, scores_mean[idx,:], '-o', label= name_param_2 + ': ' + str(val))

    ax.set_title("Grid Search Scores", fontsize=20, fontweight='bold')
    ax.set_xlabel(name_param_1, fontsize=16)
    ax.set_ylabel('CV Average Score', fontsize=16)
    ax.legend(loc="best", fontsize=15)
    ax.grid('on')

# Calling Method 
plot_grid_search(pipe_grid.cv_results_, n_estimators, max_features, 'N Estimators', 'Max Features')

Les résultats ci-dessus dans le graphique suivant:

 enter image description here

18
David Alvarez

L'ordre dans lequel la grille de paramètres est parcourue est déterministe, de sorte qu'il peut être modifié et tracé directement. Quelque chose comme ça:

scores = [entry.mean_validation_score for entry in grid.grid_scores_]
# the shape is according to the alphabetical order of the parameters in the grid
scores = np.array(scores).reshape(len(C_range), len(gamma_range))
for c_scores in scores:
    plt.plot(gamma_range, c_scores, '-')
2
joeln

Je voulais faire quelque chose de similaire (mais évolutif à un grand nombre de paramètres) et voici ma solution pour générer des graphiques d'essaim de la sortie:

score = pd.DataFrame(gs_clf.grid_scores_).sort_values(by='mean_validation_score', ascending = False)
for i in parameters.keys():
    print(i, len(parameters[i]), parameters[i])
score[i] = score.parameters.apply(lambda x: x[i])
l =['mean_validation_score'] + list(parameters.keys())
for i in list(parameters.keys()):
    sns.swarmplot(data = score[l], x = i, y = 'mean_validation_score')
    #plt.savefig('170705_sgd_optimisation//'+i+'.jpg', dpi = 100)
    plt.show()

 SGDclassifier Loss Function Example

1
Edward Burgin