a = [1,2,3,4,5]
b = [1,3,5,6]
c = a and b
print c
sortie réelle: [1,3,5,6]
production attendue: [1,3,5]
Comment pouvons-nous réaliser une opération ET booléenne (intersection de liste) sur deux listes?
Si l'ordre n'est pas important et que vous n'avez pas à vous soucier des doublons, vous pouvez utiliser l'intersection définie:
>>> a = [1,2,3,4,5]
>>> b = [1,3,5,6]
>>> list(set(a) & set(b))
[1, 3, 5]
Utiliser des listes de compréhension est une évidence pour moi. Pas sûr de la performance, mais au moins, les listes restent.
[x for x in a if x in b]
Ou "toutes les valeurs x qui sont dans A, si la valeur X est dans B".
Si vous convertissez la plus grande des deux listes en un ensemble, vous pouvez obtenir l'intersection de cet ensemble avec une variable quelconque en utilisant intersection()
:
a = [1,2,3,4,5]
b = [1,3,5,6]
set(a).intersection(b)
Faites un set sur le plus grand:
_auxset = set(a)
Ensuite,
c = [x for x in b if x in _auxset]
fera ce que vous voulez (en préservant les commandes de b
et non de a
- ne peut pas nécessairement conserver les deux) et le faire rapide. (En utilisant if x in a
car la condition dans la liste comprendrait également, et évitait de construire _auxset
_, mais malheureusement pour les listes de longueur importante, ce serait beaucoup plus lent).
Si vous souhaitez que le résultat soit trié plutôt que de conserver l'ordre de l'une ou l'autre liste, une méthode encore plus intéressante pourrait être:
c = sorted(set(a).intersection(b))
Voici quelques Python 2/Python 3 codes qui génèrent des informations de synchronisation pour les méthodes basées sur la liste et les méthodes basées sur des ensembles pour trouver l'intersection de deux listes.
Les algorithmes de compréhension de liste purs sont O (n ^ 2), puisque in
sur une liste est une recherche linéaire. Les algorithmes basés sur le jeu sont O (n), puisque la recherche du jeu est O (1) et la création du jeu est O(n) (et la conversion d’un jeu en liste est également O (n Donc) pour suffisamment grand n , les algorithmes basés sur les ensembles sont plus rapides, mais pour petit n Les frais généraux liés à la création du ou des ensembles les rendent plus lents que les algorithmes de calcul de liste purs.
#!/usr/bin/env python
''' Time list- vs set-based list intersection
See http://stackoverflow.com/q/3697432/4014959
Written by PM 2Ring 2015.10.16
'''
from __future__ import print_function, division
from timeit import Timer
setup = 'from __main__ import a, b'
cmd_lista = '[u for u in a if u in b]'
cmd_listb = '[u for u in b if u in a]'
cmd_lcsa = 'sa=set(a);[u for u in b if u in sa]'
cmd_seta = 'list(set(a).intersection(b))'
cmd_setb = 'list(set(b).intersection(a))'
reps = 3
loops = 50000
def do_timing(heading, cmd, setup):
t = Timer(cmd, setup)
r = t.repeat(reps, loops)
r.sort()
print(heading, r)
return r[0]
m = 10
nums = list(range(6 * m))
for n in range(1, m + 1):
a = nums[:6*n:2]
b = nums[:6*n:3]
print('\nn =', n, len(a), len(b))
#print('\nn = %d\n%s %d\n%s %d' % (n, a, len(a), b, len(b)))
la = do_timing('lista', cmd_lista, setup)
lb = do_timing('listb', cmd_listb, setup)
lc = do_timing('lcsa ', cmd_lcsa, setup)
sa = do_timing('seta ', cmd_seta, setup)
sb = do_timing('setb ', cmd_setb, setup)
print(la/sa, lb/sa, lc/sa, la/sb, lb/sb, lc/sb)
sortie
n = 1 3 2
lista [0.082171916961669922, 0.082588911056518555, 0.0898590087890625]
listb [0.069530963897705078, 0.070394992828369141, 0.075379848480224609]
lcsa [0.11858987808227539, 0.1188349723815918, 0.12825107574462891]
seta [0.26900982856750488, 0.26902294158935547, 0.27298116683959961]
setb [0.27218389511108398, 0.27459001541137695, 0.34307217597961426]
0.305460649521 0.258469975867 0.440838458259 0.301898526833 0.255455833892 0.435697630214
n = 2 6 4
lista [0.15915989875793457, 0.16000485420227051, 0.16551494598388672]
listb [0.13000702857971191, 0.13060092926025391, 0.13543915748596191]
lcsa [0.18650484085083008, 0.18742108345031738, 0.19513416290283203]
seta [0.33592700958251953, 0.34001994132995605, 0.34146714210510254]
setb [0.29436492919921875, 0.2953648567199707, 0.30039691925048828]
0.473793098554 0.387009751735 0.555194537893 0.540689066428 0.441652573672 0.633583767462
n = 3 9 6
lista [0.27657914161682129, 0.28098297119140625, 0.28311991691589355]
listb [0.21585917472839355, 0.21679902076721191, 0.22272896766662598]
lcsa [0.22559309005737305, 0.2271728515625, 0.2323150634765625]
seta [0.36382699012756348, 0.36453008651733398, 0.36750602722167969]
setb [0.34979605674743652, 0.35533690452575684, 0.36164689064025879]
0.760194128313 0.59330170819 0.62005595016 0.790686848184 0.61710008036 0.644927481902
n = 4 12 8
lista [0.39616990089416504, 0.39746403694152832, 0.41129183769226074]
listb [0.33485794067382812, 0.33914685249328613, 0.37850618362426758]
lcsa [0.27405810356140137, 0.2745978832244873, 0.28249192237854004]
seta [0.39211201667785645, 0.39234519004821777, 0.39317893981933594]
setb [0.36988520622253418, 0.37011313438415527, 0.37571001052856445]
1.01034878821 0.85398540833 0.698928091731 1.07106176249 0.905302334456 0.740927452493
n = 5 15 10
lista [0.56792402267456055, 0.57422614097595215, 0.57740211486816406]
listb [0.47309303283691406, 0.47619009017944336, 0.47628307342529297]
lcsa [0.32805585861206055, 0.32813096046447754, 0.3349759578704834]
seta [0.40036201477050781, 0.40322518348693848, 0.40548801422119141]
setb [0.39103078842163086, 0.39722800254821777, 0.43811702728271484]
1.41852623806 1.18166313332 0.819398061028 1.45237674242 1.20986133789 0.838951479847
n = 6 18 12
lista [0.77897095680236816, 0.78187918663024902, 0.78467702865600586]
listb [0.629547119140625, 0.63210701942443848, 0.63321495056152344]
lcsa [0.36563992500305176, 0.36638498306274414, 0.38175487518310547]
seta [0.46695613861083984, 0.46992206573486328, 0.47583580017089844]
setb [0.47616910934448242, 0.47661614418029785, 0.4850609302520752]
1.66818870637 1.34819326075 0.783028414812 1.63591241329 1.32210827369 0.767878297495
n = 7 21 14
lista [0.9703209400177002, 0.9734041690826416, 1.0182771682739258]
listb [0.82394003868103027, 0.82625699043273926, 0.82796716690063477]
lcsa [0.40975093841552734, 0.41210508346557617, 0.42286920547485352]
seta [0.5086359977722168, 0.50968098640441895, 0.51014018058776855]
setb [0.48688101768493652, 0.4879908561706543, 0.49204087257385254]
1.90769222837 1.61990115188 0.805587768483 1.99293236904 1.69228211566 0.841583309951
n = 8 24 16
lista [1.204819917678833, 1.2206029891967773, 1.258256196975708]
listb [1.014998197555542, 1.0206191539764404, 1.0343101024627686]
lcsa [0.50966787338256836, 0.51018595695495605, 0.51319599151611328]
seta [0.50310111045837402, 0.50556015968322754, 0.51335406303405762]
setb [0.51472997665405273, 0.51948785781860352, 0.52113485336303711]
2.39478683834 2.01748351664 1.01305257092 2.34068341135 1.97190418975 0.990165516871
n = 9 27 18
lista [1.511646032333374, 1.5133969783782959, 1.5639569759368896]
listb [1.2461750507354736, 1.254518985748291, 1.2613379955291748]
lcsa [0.5565330982208252, 0.56119203567504883, 0.56451296806335449]
seta [0.5966339111328125, 0.60275578498840332, 0.64791703224182129]
setb [0.54694414138793945, 0.5508568286895752, 0.55375313758850098]
2.53362406013 2.08867620074 0.932788243907 2.76380331728 2.27843203069 1.01753187594
n = 10 30 20
lista [1.7777848243713379, 2.1453688144683838, 2.4085969924926758]
listb [1.5070111751556396, 1.5202279090881348, 1.5779800415039062]
lcsa [0.5954139232635498, 0.59703707695007324, 0.60746097564697266]
seta [0.61563014984130859, 0.62125110626220703, 0.62354087829589844]
setb [0.56723213195800781, 0.57257509231567383, 0.57460403442382812]
2.88774814689 2.44791645689 0.967161734066 3.13413984189 2.6567803378 1.04968299523
Généré à l'aide d'une machine monocœur de 2 GHz avec 2 Go de RAM exécuté Python 2.6.6 sur une version Debian de Linux (avec Firefox exécuté en arrière-plan).
Ces chiffres ne sont qu’une indication approximative, car les vitesses réelles des différents algorithmes sont affectées différemment par la proportion d’éléments qui figurent dans les deux listes source.
a = [1,2,3,4,5]
b = [1,3,5,6]
c = list(set(a).intersection(set(b)))
Devrait fonctionner comme un rêve. Et, si vous le pouvez, utilisez des ensembles plutôt que des listes pour éviter tout changement de ce type!
Une manière fonctionnelle peut être obtenue en utilisant l'opérateur filter
et lambda
.
list1 = [1,2,3,4,5,6]
list2 = [2,4,6,9,10]
>>> list(filter(lambda x:x in list1, list2))
[2, 4, 6]
Edit: Il filtre x qui existe à la fois dans list1 et list, une différence d’ensemble peut également être obtenue en utilisant:
>>> list(filter(lambda x:x not in list1, list2))
[9,10]
Edit2: python3 filter
renvoie un objet filtre, en l'encapsulant avec list
renvoie la liste de résultats.
Il est peut-être tard, mais je pensais que je devrais partager le cas où vous devez le faire manuellement (show working - haha) OR lorsque vous avez besoin que tous les éléments apparaissent autant de fois que possible. ou quand vous en avez aussi besoin pour être unique.
Veuillez noter que des tests ont également été écrits pour cela.
from nose.tools import assert_equal
'''
Given two lists, print out the list of overlapping elements
'''
def overlap(l_a, l_b):
'''
compare the two lists l_a and l_b and return the overlapping
elements (intersecting) between the two
'''
#Edge case is when they are the same lists
if l_a == l_b:
return [] #no overlapping elements
output = []
if len(l_a) == len(l_b):
for i in range(l_a): #same length so either one applies
if l_a[i] in l_b:
output.append(l_a[i])
#found all by now
#return output #if repetition does not matter
return list(set(output))
else:
#find the smallest and largest lists and go with that
sm = l_a if len(l_a) len(l_b) else l_b
for i in range(len(sm)):
if sm[i] in lg:
output.append(sm[i])
#return output #if repetition does not matter
return list(set(output))
## Test the Above Implementation
a = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
b = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
exp = [1, 2, 3, 5, 8, 13]
c = [4, 4, 5, 6]
d = [5, 7, 4, 8 ,6 ] #assuming it is not ordered
exp2 = [4, 5, 6]
class TestOverlap(object):
def test(self, sol):
t = sol(a, b)
assert_equal(t, exp)
print('Comparing the two lists produces')
print(t)
t = sol(c, d)
assert_equal(t, exp2)
print('Comparing the two lists produces')
print(t)
print('All Tests Passed!!')
t = TestOverlap()
t.test(overlap)
Ceci est un exemple lorsque vous avez besoin. Chaque élément du résultat doit apparaître autant de fois qu'il apparaît dans les deux tableaux.
def intersection(nums1, nums2):
#example:
#nums1 = [1,2,2,1]
#nums2 = [2,2]
#output = [2,2]
#find first 2 and remove from target, continue iterating
target, iterate = [nums1, nums2] if len(nums2) >= len(nums1) else [nums2, nums1] #iterate will look into target
if len(target) == 0:
return []
i = 0
store = []
while i < len(iterate):
element = iterate[i]
if element in target:
store.append(element)
target.remove(element)
i += 1
return store