web-dev-qa-db-fra.com

Concaténer des rangées de deux images dans pandas

Je dois concaténer deux images df_a etdf_b ayant le même nombre de lignes (nRow) l'une après l'autre, sans aucune considération de clé. Cette fonction est similaire à cbind dans R programming language. Le nombre de colonnes dans chaque cadre de données peut être différent.

La trame de données résultante aura le même nombre de lignes nRow et un nombre de colonnes égal à la somme du nombre de colonnes des deux trames de données. En d'autres termes, il s'agit d'une concaténation en colonne aveugle de deux trames de données.

import pandas as pd
dict_data = {'Treatment': ['C', 'C', 'C'], 'Biorep': ['A', 'A', 'A'], 'Techrep': [1, 1, 1], 'AAseq': ['ELVISLIVES', 'ELVISLIVES', 'ELVISLIVES'], 'mz':[500.0, 500.5, 501.0]}
df_a = pd.DataFrame(dict_data)
dict_data = {'Treatment1': ['C', 'C', 'C'], 'Biorep1': ['A', 'A', 'A'], 'Techrep1': [1, 1, 1], 'AAseq1': ['ELVISLIVES', 'ELVISLIVES', 'ELVISLIVES'], 'inte1':[1100.0, 1050.0, 1010.0]}
df_b = pd.DataFrame(dict_data)
48
user1140126

appelez concat et transmettez le param axis=1 pour concaténer les colonnes:

In [5]:

pd.concat([df_a,df_b], axis=1)
Out[5]:
        AAseq Biorep  Techrep Treatment     mz      AAseq1 Biorep1  Techrep1  \
0  ELVISLIVES      A        1         C  500.0  ELVISLIVES       A         1   
1  ELVISLIVES      A        1         C  500.5  ELVISLIVES       A         1   
2  ELVISLIVES      A        1         C  501.0  ELVISLIVES       A         1   

  Treatment1  inte1  
0          C   1100  
1          C   1050  
2          C   1010  

Il existe un guide utile sur les différentes méthodes de fusion, jonction et concaténation en ligne.

Par exemple, comme vous n'avez pas de colonnes en conflit, vous pouvez merge et utiliser les index car ils ont le même nombre de lignes:

In [6]:

df_a.merge(df_b, left_index=True, right_index=True)
Out[6]:
        AAseq Biorep  Techrep Treatment     mz      AAseq1 Biorep1  Techrep1  \
0  ELVISLIVES      A        1         C  500.0  ELVISLIVES       A         1   
1  ELVISLIVES      A        1         C  500.5  ELVISLIVES       A         1   
2  ELVISLIVES      A        1         C  501.0  ELVISLIVES       A         1   

  Treatment1  inte1  
0          C   1100  
1          C   1050  
2          C   1010  

Et pour les mêmes raisons que ci-dessus, un simple join fonctionne aussi:

In [7]:

df_a.join(df_b)
Out[7]:
        AAseq Biorep  Techrep Treatment     mz      AAseq1 Biorep1  Techrep1  \
0  ELVISLIVES      A        1         C  500.0  ELVISLIVES       A         1   
1  ELVISLIVES      A        1         C  500.5  ELVISLIVES       A         1   
2  ELVISLIVES      A        1         C  501.0  ELVISLIVES       A         1   

  Treatment1  inte1  
0          C   1100  
1          C   1050  
2          C   1010  
78
EdChum

Grâce à @EdChum, je rencontrais le même problème, en particulier lorsque les index ne correspondaient pas. Malheureusement dans pandas guide, ce cas est oublié (lorsque vous supprimez par exemple certaines lignes)

import pandas as pd
t=pd.DataFrame()
t['a']=[1,2,3,4]
t=t.loc[t['a']>1] #now index starts from 1

u=pd.DataFrame()
u['b']=[1,2,3] #index starts from 0

#option 1
#keep index of t
u.index = t.index 

#option 2
#index of t starts from 0
t.reset_index(drop=True, inplace=True)

#now concat will keep number of rows 
r=pd.concat([t,u], axis=1)
2
Yury Wallet